Abstract
The enzyme activities involved in fructose metabolism were measured in samples of human liver. On the basis of U/g of wet-weight the following results were found: ketohexokinase, 1.23; aldolase (substrate, fructose-1-phosphate), 2.08; aldolase (substrate, fructose-1,6-diphosphate), 3.46; triokinase, 2.07; aldehyde dehydrogenase (substrate, D-glyceraldehyde), 1.04; D-glycerate kinase, 0.13; alcohol dehydrogenase (nicotinamide adenine dinucleotide [NAD]) substrate, D-glyceraldehyde), 3.1; alcohol dehydrogenase (nicotinamide adenine dinucleotide phosphate [NADP]) (substrate, D-glyceraldehyde), 3.6; and glycerol kinase, 0.62. Sorbitol dehydrogenases (25.0 U/g), hexosediphosphatase (4.06 U/g), hexokinase (0.23 U/g), and glucokinase (0.08 U/g) were also measured. Comparing these results with those of the rat liver it becomes clear that the activities of alcohol dehydrogenases (NAD and NADP) in rat liver are higher than those in human liver, and that the values of ketohexokinase, sorbitol dehydrogenases, and hexosediphosphatase in human liver are lower than those values found in rat liver. Human liver contains only traces of glycerate kinase.
The rate of fructose uptake from the blood, as described by other investigators, can be based on the activity of ketohexokinase reported in the present paper. In human liver, ketohexokinase is present in a four-fold activity of glucokinase and hexokinase. This result may explain the well-known fact that fructose is metabolized faster than glucose.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelman R. C., Ballard F. J., Weinhouse S. Purification and properties of rat liver fructokinase. J Biol Chem. 1967 Jul 25;242(14):3360–3365. [PubMed] [Google Scholar]
- Adelman R. C., Spolter P. D., Weinhouse S. Dietary and hormonal regulation of enzymes of fructose metabolism in rat liver. J Biol Chem. 1966 Nov 25;241(22):5467–5472. [PubMed] [Google Scholar]
- Anstall H. B., Lapp C., Trujillo J. M. Isozymes of aldolase. Science. 1966 Nov 4;154(3749):657–658. doi: 10.1126/science.154.3749.657. [DOI] [PubMed] [Google Scholar]
- BUBLITZ C., KENNEDY E. P. A note of the asymmetrical metabolism of glycerol. J Biol Chem. 1954 Dec;211(2):963–967. [PubMed] [Google Scholar]
- BUBLITZ C., KENNEDY E. P. Synthesis of phosphatides in isolated mitochondria. III. The enzymatic phosphorylation of glycerol. J Biol Chem. 1954 Dec;211(2):951–961. [PubMed] [Google Scholar]
- Brown J., Miller D. M., Holloway M. T., Leve G. D. Hexokinase isoenzymes in liver and adipose tissue of man and dog. Science. 1967 Jan 13;155(3759):205–207. doi: 10.1126/science.155.3759.205. [DOI] [PubMed] [Google Scholar]
- CORI G. T., OCHOA S., SLEIN M. W., CORI C. F. The metabolism of fructose in liver; isolation of fructose-I-phosphate and inorganic pyrophosphate. Biochim Biophys Acta. 1951 Jul;7(2):304–317. doi: 10.1016/0006-3002(51)90032-7. [DOI] [PubMed] [Google Scholar]
- CRAIG J. W., DRUCKER W. R., MILLER M., OWENS J. E., WOODWARD H., Jr, BROFMAN B., PRITCHARD W. H. Metabolism of fructose by the liver of diabetic and nondiabetic subjects. Proc Soc Exp Biol Med. 1951 Dec;78(3):698–702. doi: 10.3181/00379727-78-19186. [DOI] [PubMed] [Google Scholar]
- HEINZ F., BARTELSEN K., LAMPRECHT W. [D-glycerate dehydrogenase from liver. Contribution to serine metabolism]. Hoppe Seylers Z Physiol Chem. 1962 Nov 15;329:222–240. doi: 10.1515/bchm2.1962.329.1.222. [DOI] [PubMed] [Google Scholar]
- HERS H. G., KUSAKA T. Le metabolisme du fructose-1-phosphate dans le foie. Biochim Biophys Acta. 1953 Jul;11(3):427–437. doi: 10.1016/0006-3002(53)90062-6. [DOI] [PubMed] [Google Scholar]
- HERS H. G. La fructokinase du foie. Biochim Biophys Acta. 1952 Apr;8(4):416–423. doi: 10.1016/0006-3002(52)90067-x. [DOI] [PubMed] [Google Scholar]
- HERS H. G. The conversion of fructose-1-C14 and sorbitol-1-C14 to liver and muscle glycogen in the rat. J Biol Chem. 1955 May;214(1):373–381. [PubMed] [Google Scholar]
- HOLZER H., SCHNEIDER S. Zum Mechanismus der Beeinflussung der Alkoholoxydation in der Leber durch Fructose. Klin Wochenschr. 1955 Nov 1;33(41-42):1006–1009. doi: 10.1007/BF01483598. [DOI] [PubMed] [Google Scholar]
- Heinz F., Lamprecht W. Enzyme des Fructosestoffwechsels. Aktivität und Verteilung in der Leber der Ratte. Hoppe Seylers Z Physiol Chem. 1967 Jul;348(7):855–863. [PubMed] [Google Scholar]
- Heinz F. Messung der Enzymaktivitäten in der Dünndarmmucosa der Ratte. Hoppe Seylers Z Physiol Chem. 1968 Mar;349(3):339–344. [PubMed] [Google Scholar]
- LAMPRECHT W., DIAMANTSTEIN T., HEINZ F., BALDE P. [Phosphorylation of D-glyceric acid to 2-phospho-D-glyceric acid with glycerate kinase in the liver. I. On the biochemistry of fructose metabolism. II]. Hoppe Seylers Z Physiol Chem. 1959 Sep 30;316:97–112. doi: 10.1515/bchm2.1959.316.1.97. [DOI] [PubMed] [Google Scholar]
- LAMPRECHT W., HEINZ F. Isolierung von Glycerinaldehyd-Dehydrogenase aus Rattenleber; zur Biochemie des Fructosestoffwechsels. Z Naturforsch B. 1958 Jul;13B(7):464–465. [PubMed] [Google Scholar]
- PARKS R. E., Jr, BEN-GERSHOM E., LARDY H. A. Liver fructokinase. J Biol Chem. 1957 Jul;227(1):231–242. [PubMed] [Google Scholar]
- PEARSON C. M., RIMER D. G., MOMMAERTS W. F. A metabolic myopathy due to absence of muscle phosphorylase. Am J Med. 1961 Apr;30:502–517. doi: 10.1016/0002-9343(61)90075-4. [DOI] [PubMed] [Google Scholar]
- RUTTER W. J. EVOLUTION OF ALDOLASE. Fed Proc. 1964 Nov-Dec;23:1248–1257. [PubMed] [Google Scholar]
- Rauschenbach P., Lamprecht W. Einbau von 14C-markierter Glucose und Fructose in Leberglykogen. Zum Fructosestoffwechsel in der Leber. Hoppe Seylers Z Physiol Chem. 1964;339(1):277–292. [PubMed] [Google Scholar]
- TYGSTRUP N., WINKLER K., LUNDQUIST F. THE MECHANISM OF THE FRUCTOSE EFFECT ON THE ETHANOL METABOLISM OF THE HUMAN LIVER. J Clin Invest. 1965 May;44:817–830. doi: 10.1172/JCI105194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VESTLING C. S., MYLROIE A. K., IRISH U., GRANT N. H. Rat liver fructokinase. J Biol Chem. 1950 Aug;185(2):789–801. [PubMed] [Google Scholar]
- VINUELA E., SALAS M., SOLS A. Glucokinase and hexokinase in liver in relation to glycogen synthesis. J Biol Chem. 1963 Mar;238:1175–1177. [PubMed] [Google Scholar]
- WIELAND O., SUYTER M. Glycerokinase; Isolierung und Eigenschaften des Enzyms. Biochem Z. 1957;329(4):320–331. [PubMed] [Google Scholar]