Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1968 Sep;47(9):2016–2024. doi: 10.1172/JCI105888

Control of fluid absorption in the renal proximal tubule

Maurice B Burg 1, Jack Orloff 1
PMCID: PMC297363  PMID: 4300070

Abstract

Glomerulotubular balance was investigated in isolated, perfused rabbit proximal tubules in vitro in order to evaluate some of the mechanisms proposed to account for the proportionate relationship between glomerular filtration rate and fluid absorption generally observed in vivo. The rate of fluid transport from lumen to bath in proximal convoluted tubules in vitro was approximately equal to the estimated normal rate in vivo. The absorption rate in proximal straight tubules however was approximately one-half as great. If the mechanism responsible for maintenance of glomerulotubular balance is intrinsic to the proximal tubule, as has been proposed on the basis of micropuncture studies, the rate of fluid absorption in vitro should be directly related to the perfusion rate and/or tubule volume. In the present studies absorption rate was only minimally affected when perfusion rate was increased or the tubule distended. Thus, glomerulotubular balance is not mediated by changes in velocity of flow of the tubular fluid or tubular diameter and therefore is not an intrinsic property of the proximal tubule. It has also been proposed that glomerulotubular balance results from a humoral feedback mechanism in which angiotensin directly inhibits fluid absorption by the proximal convoluted tubule. In the present experiments, angiotensin was found to have no significant effect on absorption rate.

Full text

PDF
2016

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brenner B. M., Bennett C. M., Berliner R. W. The relationship between glomerular filtration rate and sodium reabsorption by the proximal tubule of the rat nephron. J Clin Invest. 1968 Jun;47(6):1358–1374. doi: 10.1172/JCI105828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brunner F. P., Rector F. C., Jr, Seldin D. W. Mechanism of glomerulotubular balance. II. Regulation of proximal tubular reabsorption by tubular volume, as studied by stopped-flow microperfusion. J Clin Invest. 1966 Apr;45(4):603–611. doi: 10.1172/JCI105374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  4. Cirksena W. J., Dirks J. H., Berliner R. W. Effect of thoracic cava obstruction on response of proximal tubule sodium reabsorption to saline infusion. J Clin Invest. 1966 Feb;45(2):179–186. doi: 10.1172/JCI105330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DIRKS J. H., CIRKSENA W. J., BERLINER R. W. THE EFFECTS OF SALINE INFUSION ON SODIUM REABSORPTION BY THE PROXIMAL TUBULE OF THE DOG. J Clin Invest. 1965 Jul;44:1160–1170. doi: 10.1172/JCI105223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FLANIGAN W. J., OKEN D. E. RENAL MICROPUNCTURE STUDY OF THE DEVELOPMENT OF ANURIA IN THE RAT WITH MERCURY-INDUCED ACUTE RENAL FAILURE. J Clin Invest. 1965 Mar;44:449–457. doi: 10.1172/JCI105158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GIEBISCH G., WINDHAGER E. E. RENAL TUBULAR TRANSFER OF SODIUM, CHLORIDE AND POTASSIUM. Am J Med. 1964 May;36:643–669. doi: 10.1016/0002-9343(64)90178-0. [DOI] [PubMed] [Google Scholar]
  8. GLABMAN S., AYNEDJIAN H. S., BANK N. MICROPUNCTURE STUDY OF THE EFFECT OF ACUTE REDUCTIONS IN GLOMERULAR FILTRATION RATE ON SODIUM AND WATER REABSORPTION BY THE PROXIMAL TUBULES OF THE RAT. J Clin Invest. 1965 Aug;44:1410–1416. doi: 10.1172/JCI105246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gertz K. H., Mangos J. A., Braun G., Pagel H. D. On the glomerular tubular balance in the rat kidney. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Sep 15;285(4):360–372. doi: 10.1007/BF00363236. [DOI] [PubMed] [Google Scholar]
  10. Grantham J. J., Burg M. B. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol. 1966 Jul;211(1):255–259. doi: 10.1152/ajplegacy.1966.211.1.255. [DOI] [PubMed] [Google Scholar]
  11. Hayslett J. P., Kashgarian M., Epstein F. H. Changes in proximal and distal tubular reabsorption produced by rapid expansion of extracellular fluid. J Clin Invest. 1967 Jul;46(7):1254–1263. doi: 10.1172/JCI105618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horster M., Nagel W., Schnermann J., Thurau K. Zur Frage einer direkten Angiotensinwirkung auf die Natriumresorption im proximalen Tubulus und in der Henleschen Schleife der Rattenniere. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;292(2):118–128. [PubMed] [Google Scholar]
  13. KELMAN R. B. A theoretical note on exponential flow in the proximal part of the mammalian nephron. Bull Math Biophys. 1962 Sep;24:303–317. doi: 10.1007/BF02477961. [DOI] [PubMed] [Google Scholar]
  14. LASSITER W. E., MYLLE M., GOTTSCHALK C. W. NET TRANSTUBULAR MOVEMENT OF WATER AND UREA IN SALINE DIURESIS. Am J Physiol. 1964 Apr;206:669–673. doi: 10.1152/ajplegacy.1964.206.4.669. [DOI] [PubMed] [Google Scholar]
  15. LEYSSAC P. P. Dependence of glomerular filtration rate on proximal tubular reabsorption of salt. Acta Physiol Scand. 1963 Jun-Jul;58:236–242. doi: 10.1111/j.1748-1716.1963.tb02644.x. [DOI] [PubMed] [Google Scholar]
  16. LEYSSAC P. P. THE IN VIVO EFFECT OF ANGIOTENSIN AND NORADRENALINE ON THE PROXIMAL TUBULAR REABSORPTION OF SALT IN MAMMALIAN KIDNEYS. Acta Physiol Scand. 1965 May-Jun;64:167–175. doi: 10.1111/j.1748-1716.1965.tb04165.x. [DOI] [PubMed] [Google Scholar]
  17. LEYSSAC P. P. THE IN VIVO EFFECT OF ANGIOTENSIN ON THE PROXIMAL TUBULAR REABSORPTION OF SALT IN RAT KIDNEYS. Acta Physiol Scand. 1964 Dec;62:436–448. doi: 10.1111/j.1748-1716.1964.tb10441.x. [DOI] [PubMed] [Google Scholar]
  18. Longley J. B., Burstone M. S. Intraluminal Nuclei and Other Inclusions as Agonal Artifacts of the Renal Proximal Tubules. Am J Pathol. 1963 Jun;42(6):643–655. [PMC free article] [PubMed] [Google Scholar]
  19. Rector F. C., Jr, Brunner F. P., Seldin D. W. Mechanism of glomerulotubular balance. I. Effect of aortic constriction and elevated ureteropelvic pressure on glomerular filtration rate, fractional reabsorption, transit time, and tubular size in the proximal tubule of the rat. J Clin Invest. 1966 Apr;45(4):590–602. doi: 10.1172/JCI105373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rector F. C., Jr, Sellman J. C., Martinez-Maldonado M., Seldin D. W. The mechanism of suppression of proximal tubular reabsorption by saline infusions. J Clin Invest. 1967 Jan;46(1):47–56. doi: 10.1172/JCI105510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. STEINHAUSEN M., IRAVANI I., SCHUBERT G. E., TAUGNER R., BRAUN A., VON EGIDY, ROHMANN F. P., TAUGNER G. AUFLICHTMIKROSKOPIE UND HISTOLOGIE DER TUBULUSDIMENSIONEN BEI VERSCHIEDENEN DIURESEZUSTAENDEN. Virchows Arch Pathol Anat Physiol Klin Med. 1963 Aug 8;336:503–527. [PubMed] [Google Scholar]
  22. Strassberg J., Paule J., Gonick H. C., Maxwell M. H., Kleeman C. R. The quantitative estimation of perfusible glomeruli and the collagen and non-collagen nitrogen of the normal kidney. Nephron. 1967;4(6):384–393. doi: 10.1159/000179597. [DOI] [PubMed] [Google Scholar]
  23. Watson J. F. Effect of saline loading on sodium reabsorption in the dog proximal tubule. Am J Physiol. 1966 Apr;210(4):781–785. doi: 10.1152/ajplegacy.1966.210.4.781. [DOI] [PubMed] [Google Scholar]
  24. Wiederholt M., Hierholzer K., Windhager E. E., Giebisch G. Microperfusion study of fluid reabsorption in proximal tubules of rat kidneys. Am J Physiol. 1967 Sep;213(3):809–818. doi: 10.1152/ajplegacy.1967.213.3.809. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES