Abstract
Whole blood samples of patients with various forms of alpha thalassemia including hemoglobin H disease, alpha thalassemia trait, and the “silent carrier” state were incubated with leucine-14C for definition of relative rates of production of alpha and beta chains in these disorders. The chains were separated by carboxymethyl cellulose chromatography in the presence of 8 M urea and dithiothreitol. Their absorptions at 280 mμ were determined and their radioactivities measured in a liquid scintillation spectrometer. After correction for differences in extinction coefficients, the specific activities of the widely separated alpha and beta peaks were determined. In 11 nonthalassemic individuals, the alpha/beta specific activity ratios were found to be 1.02±0.07; in nine patients with alpha thalassemia trait, 0.77±0.05; in six patients with hemoglobin H disease, 0.41±0.11; and in four “silent carriers,” 0.88 with a range of 0.82-0.95. The results show that in peripheral blood, alpha chain production relative to beta chain production is indeed limited in the alpha thalassemia syndromes. Hemoglobin H disease results from doubly heterozygous inheritance of a gene resulting in moderate depression of alpha chain production (alpha thalassemia trait) and a gene resulting in very mild depression of alpha chain production (the “silent carrier” syndrome.”
Full text
PDF![2515](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0861/297416/1d3f27e35f18/jcinvest00246-0107.png)
![2516](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0861/297416/e91d5ff63cdc/jcinvest00246-0108.png)
![2517](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0861/297416/c63e83db46e7/jcinvest00246-0109.png)
![2518](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0861/297416/b9b7ef39ae82/jcinvest00246-0110.png)
![2519](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0861/297416/31752a62c68f/jcinvest00246-0111.png)
![2520](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0861/297416/c8c6e4027763/jcinvest00246-0112.png)
![2521](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0861/297416/5ed90daaba17/jcinvest00246-0113.png)
![2522](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0861/297416/a8f31fe5a195/jcinvest00246-0114.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ATWATER J., SCHWARTZ I. R., ERSLEV A. J., MONTGOMERY T. L., TOCANTINS L. M. Sickling of erythrocytes in a patient with thalassemia-hemoglobin-I disease. N Engl J Med. 1960 Dec 15;263:1215–1223. doi: 10.1056/NEJM196012152632402. [DOI] [PubMed] [Google Scholar]
- Clegg J. B., Naughton M. A., Weatherall D. J. An improved method for the characterization of human haemoglobin mutants: identification of alpha-2-beta-2-95GLU, haemoglobin N (Baltimore). Nature. 1965 Aug 28;207(5000):945–947. doi: 10.1038/207945a0. [DOI] [PubMed] [Google Scholar]
- Clegg J. B., Weatherall D. J. Haemoglobin synthesis in alpha-thalassaemia (haemoglobin H disease). Nature. 1967 Sep 16;215(5107):1241–1243. doi: 10.1038/2151241a0. [DOI] [PubMed] [Google Scholar]
- DORMANDY K. M., LOCK S. P., LEHMANN H. Haemoglobin Q-alpha-thalassaemia. Br Med J. 1961 Jun 3;1(5239):1582–1585. doi: 10.1136/bmj.1.5239.1582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GAMMACK D. B., HUEHNS E. R., SHOOTER E. M., GERALD P. S. Identification of the abnormal polypeptide chain of hemoglobin G-Ib. J Mol Biol. 1960 Dec;2:372–378. doi: 10.1016/s0022-2836(60)80048-4. [DOI] [PubMed] [Google Scholar]
- GOUTTAS A., FESSAS P., TSEVRENIS H., XEFTERI E. Description d'une nouvelle variété d'anémie hémolytique congénitale; etude hématologique, électrophorétique et génétique. Sang. 1955;26(9):911–919. [PubMed] [Google Scholar]
- HILL R. J., KONIGSBERG W., GUIDOTTI G., CRAIG L. C. The structure of human hemoglobin. I. The separation of the alpha and beta chains and their amino acid composition. J Biol Chem. 1962 May;237:1549–1554. [PubMed] [Google Scholar]
- Heywood J. D., Karon M., Weissman S. Studies of the kinetics of alpha and beta hemoglobin chain synthesis. J Lab Clin Med. 1966 Feb;67(2):246–254. [PubMed] [Google Scholar]
- INGRAM V. M., STRETTON A. O. Genetic basis of the thalassaemia diseases. Nature. 1959 Dec 19;184:1903–1909. doi: 10.1038/1841903a0. [DOI] [PubMed] [Google Scholar]
- KOLER R. D., RIGAS D. A. Genetics of haemoglobin H. Ann Hum Genet. 1961 May;25:95–100. doi: 10.1111/j.1469-1809.1961.tb01503.x. [DOI] [PubMed] [Google Scholar]
- Kan Y. W., Allen A., Lowenstein L. Hydrops fetalis with alpha thalassemia. N Engl J Med. 1967 Jan 5;276(1):18–23. doi: 10.1056/NEJM196701052760103. [DOI] [PubMed] [Google Scholar]
- LIE-INJO L. E. Alpha-chain thalassemia and hydrops fetalis in Malaya: report of five cases. Blood. 1962 Nov;20:581–590. [PubMed] [Google Scholar]
- Necheles T. F., Cates M., Sheehan R. G., Meyer H. J. Hemoglobin H disease. A family study. Blood. 1966 Oct;28(4):501–512. [PubMed] [Google Scholar]
- RAMOT B., SHEBA C., FISHER S., AGER J. A., LEHMANN H. Haemoglobin H disease with persistent haemoglobin "Bart's" in an Oriental Jewess and her daughter: a dual alpha-chain deficiency of human haemoglobin. Br Med J. 1959 Dec 5;2(5161):1228–1230. doi: 10.1136/bmj.2.5161.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WASI P., NA-NAKORN S., SUINGDUMRONG A. HAEMOGLOBIN H DISEASE IN THAILAND: A GENETICAL STUDY. Nature. 1964 Nov 28;204:907–908. doi: 10.1038/204907a0. [DOI] [PubMed] [Google Scholar]
- Weatherall D. J., Clegg J. B., Naughton M. A. Globin synthesis in thalassaemia: an in vitro study. Nature. 1965 Dec 11;208(5015):1061–1065. doi: 10.1038/2081061a0. [DOI] [PubMed] [Google Scholar]