Abstract
The role of phospholipases in the regulation of the changing phospholipid composition of normal human aortae with age was studied. Portions of grossly and histologically lesion-free ascending aortae from 16 females and 29 males obtained at autopsy, were analyzed for deoxyribonucleic acid (DNA), phospholipid, and cholesterol content and phospholipid composition. Enzymic activity toward four substrates, lecithin (LE), phosphatidyl ethanolamine, lysolecithin, and sphingomyelin (SP), was determined on portions of the same homogenate. By regression analysis for correlation between all determinations and age the following results were obtained: (a) total phospholipids and choleserol increased linearly with age; (b) the increase in sphingomyelin accounted for about 70% of the phospholipid increment; (c) hydrolysis of lecithin and phosphatidyl ethanolamine increased markedly with age, that of lysolecithin only moderately; (d) hydrolysis of sphingomyelin decreased with age; and (e) an inverse relation between the SP/LE ratio and age and sphingomyelinase/lecithinase activity and age was obtained. These results were interpreted to indicate that a causal relation exists between the fall in sphingomyelinase activity, both absolute and relative to lecithinase activity, and the accumulation of sphingomyelin with age.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADAMS C. W., BAYLISS O. B. Histochemical observations on the localisation and origin of sphingomyelin, cerebroside and cholesterol in the normal and atherosclerotic human artery. J Pathol Bacteriol. 1963 Jan;85:113–119. doi: 10.1002/path.1700850111. [DOI] [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BOETTCHER C. J., BOELSMA-VANHOUTE E. METHOD FOR THE HISTOCHEMICAL IDENTIFICATION OF CHOLINE-CONTAINING PHOSPHOLIPIDS. J Atheroscler Res. 1964 Jan-Feb;4:109–112. doi: 10.1016/s0368-1319(64)80021-1. [DOI] [PubMed] [Google Scholar]
- BRAGDON J. H., HAVEL R. J., BOYLE E. Human serum lipoproteins. I. Chemical composition of four fractions. J Lab Clin Med. 1956 Jul;48(1):36–42. [PubMed] [Google Scholar]
- BUCK R. C., ROSSITER R. J. Lipids of normal and atherosclerotic aortas; a chemical study. AMA Arch Pathol. 1951 Feb;51(2):224–237. [PubMed] [Google Scholar]
- Boelsma-van Houte E., Böttcher C. J. Localization in the human aortic wall of phospholipids containing choline. J Atheroscler Res. 1967 May-Jun;7(3):269–281. doi: 10.1016/s0368-1319(67)80054-1. [DOI] [PubMed] [Google Scholar]
- CHIAMORI N., HENRY R. J. Study of the ferric chloride method for determination of total cholesterol and cholesterol esters. Am J Clin Pathol. 1959 Apr;31(4):305–309. doi: 10.1093/ajcp/31.4.305. [DOI] [PubMed] [Google Scholar]
- CLAUSEN B. Influence of age on chondroitin sulfates and collagen of human aorta, myocardium, and skin. Lab Invest. 1963 May;12:538–542. [PubMed] [Google Scholar]
- Chobanian A. V., Hollander W. Phospholipid synthesis in the human arterial intima. J Clin Invest. 1966 Jun;45(6):932–938. doi: 10.1172/JCI105408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEYKIN D., GOODMAN D. S. The hydrolysis of long-chain fatty acid esters of cholesterol with rat liver enzymes. J Biol Chem. 1962 Dec;237:3649–3656. [PubMed] [Google Scholar]
- Dod B. J., Gray G. M. The lipid composition of rat-liver plasma membranes. Biochim Biophys Acta. 1968 Apr 29;150(3):397–404. doi: 10.1016/0005-2736(68)90138-7. [DOI] [PubMed] [Google Scholar]
- Eisenberg S., Stein Y., Stein O. Phospholipases in arterial tissue. 3. Phosphatide acyl-hydrolase, lysophosphatide acyl-hydrolase and sphingomyelin choline phosphohydrolase in rat and rabbit aorta in different age groups. Biochim Biophys Acta. 1969 Apr 29;176(3):557–569. doi: 10.1016/0005-2760(69)90222-7. [DOI] [PubMed] [Google Scholar]
- Eisenberg S., Stein Y., Stein O. Phospholipases in arterial tissue. II. Phosphatide acyl-hydrolase and lysophosphatide acyl-hydrolase activity in human and rat arteries. Biochim Biophys Acta. 1968 Oct 22;164(2):205–214. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Hatch F. T. Practical methods for plasma lipoprotein analysis. Adv Lipid Res. 1968;6:1–68. [PubMed] [Google Scholar]
- Insull W., Jr, Bartsch G. E. Cholesterol, triglyceride, and phospholipid content of intima, media, and atherosclerotic fatty streak in human thoracic aorta. J Clin Invest. 1966 Apr;45(4):513–523. doi: 10.1172/JCI105365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LONG C., PENNY I. F. The structure of the naturally occurring phosphoglycerides. III. Action of moccasin-venom phospholipase A on ovolecithin and related substances. Biochem J. 1957 Feb;65(2):382–389. doi: 10.1042/bj0650382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lojda Z., Elleder M. Comments about the paper C.W.M. Adams and O.B. Bayliss reappraisal of osmium tetroxide and OTAN histochemical reactions. Histochemie. 1968;16(2):167–169. doi: 10.1007/BF00280615. [DOI] [PubMed] [Google Scholar]
- MOVAT H. Z., MORE R. H., HAUST M. D. The diffuse intimal thickening of the human aorta with aging. Am J Pathol. 1958 Nov-Dec;34(6):1023–1031. [PMC free article] [PubMed] [Google Scholar]
- NEWMAN H. A., McCANDLESS E. L., ZILVERSMIT D. B. The synthesis of C14-lipids in rabbit atheromatous lesions. J Biol Chem. 1961 May;236:1264–1268. [PubMed] [Google Scholar]
- PARKER F., SCHIMMELBUSCH W., WILLIAMS R. H. THE ENZYMATIC NATURE OF PHOSPHOLIPID SYNTHESIS IN NORMAL RABBIT AND HUMAN AORTA. RESULTS OF IN VITRO STUDIES. Diabetes. 1964 Mar-Apr;13:182–188. doi: 10.2337/diab.13.2.182. [DOI] [PubMed] [Google Scholar]
- PHILLIPS G. B. The phospholipid composition of human serum lipoprotein fractions separated by ultracentrifugation. J Clin Invest. 1959 Mar;38(3):489–493. doi: 10.1172/JCI103825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Portman O. W., Alexander M., Maruffo C. A. Composition of subcellular constituents of aortic intima plus inner media isolated by differential and density gradient centrifugation. Arch Biochem Biophys. 1967 Nov;122(2):344–353. doi: 10.1016/0003-9861(67)90204-4. [DOI] [PubMed] [Google Scholar]
- ROBERTSON A. F., LANDS W. E. Positional specificites in phospholipid hydrolyses. Biochemistry. 1962 Sep;1:804–810. doi: 10.1021/bi00911a012. [DOI] [PubMed] [Google Scholar]
- Rachmilewitz D., Eisenberg S., Stein Y., Stein O. Phospholipases in arterial tissue. I. Sphingomyelin cholinephosphohydrolase activity in human, dog, guinea pig, rat and rabbit arteries. Biochim Biophys Acta. 1967 Dec 5;144(3):624–632. doi: 10.1016/0005-2760(67)90051-3. [DOI] [PubMed] [Google Scholar]
- SMITH E. B. Intimal and medial lipids in human aortas. Lancet. 1960 Apr 9;1(7128):799–803. doi: 10.1016/s0140-6736(60)90680-2. [DOI] [PubMed] [Google Scholar]
- STEIN Y., STEIN O. Incorporation of fatty acids into lipids of aortic slices of rabbits, dogs, rats and baboons. J Atheroscler Res. 1962 Sep-Oct;2:400–412. doi: 10.1016/s0368-1319(62)80044-1. [DOI] [PubMed] [Google Scholar]
- STEIN Y., STEIN O., SHAPIRO B. Enzymic pathways of glyceride and phospholipid synthesis in aortic homogenates. Biochim Biophys Acta. 1963 Feb 19;70:33–42. doi: 10.1016/0006-3002(63)90716-9. [DOI] [PubMed] [Google Scholar]
- Skipski V. P., Barclay M., Archibald F. M., Terebus-Kekish O., Reichman E. S., Good J. J. Lipid composition of rat liver cell membranes. Life Sci. 1965 Sep;4(17):1673–1680. doi: 10.1016/0024-3205(65)90213-4. [DOI] [PubMed] [Google Scholar]
- Skipski V. P., Peterson R. F., Barclay M. Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J. 1964 Feb;90(2):374–378. doi: 10.1042/bj0900374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wahlqvist M. L., Day A. J., Tume R. K. Incorporation of oleic acid into lipid by foam cells in human atherosclerotic lesions. Circ Res. 1969 Jan;24(1):123–130. doi: 10.1161/01.res.24.1.123. [DOI] [PubMed] [Google Scholar]
- ZILVERSMIT D. B., McCANDLESS E. L., JORDAN P. H., HENLY W. S., ACKERMAN R. F. The synthesis of phospholipids in human atheromatous lesions. Circulation. 1961 Mar;23:370–375. doi: 10.1161/01.cir.23.3.370. [DOI] [PubMed] [Google Scholar]
- ZILVERSMIT D. B., SHORE M. L., ACKERMAN R. F. The origin of aortic phospholipid in rabbit atheromatosis. Circulation. 1954 Apr;9(4):581–585. doi: 10.1161/01.cir.9.4.581. [DOI] [PubMed] [Google Scholar]