Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2010 Oct;7(4):452–470. doi: 10.1016/j.nurt.2010.05.015

Astrocyte glutamine synthetase: Importance in hyperammonemic syndromes and potential target for therapy

Saul W Brusilow 1,, Raymond C Koehler 3, Richard J Traystman 4, Arthur J L Cooper 5,
PMCID: PMC2975543  NIHMSID: NIHMS243347  PMID: 20880508

Summary

Many theories have been advanced to explain the encephalopathy associated with chronic liver disease and with the less common acute form. A major factor contributing to hepatic encephalopathy is hyperammonemia resulting from portacaval shunting and/or liver damage. However, an increasing number of causes of hyperammonemic encephalopathy have been discovered that present with the same clinical and laboratory features found in acute liver failure, but without liver failure. Here, we critically review the physiology, pathology, and biochemistry of ammonia (i.e., NH3 plus NH4 +) and show how these elements interact to constitute a syndrome that clinicians refer to as hyperammonemic encephalopathy (i.e., acute liver failure, fulminant hepatic failure, chronic liver disease). Included will be a brief history of the status of ammonia and the centrality of the astrocyte in brain nitrogen metabolism. Ammonia is normally detoxified in the liver and extrahepatic tissues by conversion to urea and glutamine, respectively. In the brain, glutamine synthesis is largely confined to astrocytes, and it is generally accepted that in hyperammonemia excess glutamine compromises astrocyte morphology and function. Mechanisms postulated to account for this toxicity will be examined with emphasis on the osmotic effects of excess glutamine (the osmotic gliopathy theory). Because hyperammonemia causes osmotic stress and encephalopathy in patients with normal or abnormal liver function alike, the term “hyperammonemic encephalopathy” can be broadly applied to encephalopathy resulting from liver disease and from various other diseases that produce hyperammonemia. Finally, the possibility that a brain glutamine synthetase inhibitor may be of therapeutic benefit, especially in the acute form of liver disease, is discussed.

Key Words: Astrocyte swelling, cerebral edema, hepatic encephalopathy, hyperammonemia, glutamine synthetase

Contributor Information

Saul W. Brusilow, Email: sbrusilo@jhmi.edu

Arthur J. L. Cooper, Email: arthur_cooper@nymc.edu

References

  • 1.van Caulaert C, Deviller C. Ammoniémie expérimentale après ingestion de chlorure d’ammonium chez l’homme à l’état normal et pathologique. Compt Rend Soc Biol (Paris) 1932;111:50–2. [Google Scholar]
  • 2.van Caulaert C, Deviller C, Halff M. Troubles provoqués par l’ingestion de sels ammoniacaux chez l’homme atteint de cirrhose de Laënnec. Compt Rend Soc Biol (Paris) 1932;111:739–40. [Google Scholar]
  • 3.Kirk E. Amino acid metabolism in liver disease. Acta Med Scand Suppl. 1936;77:1–147. [Google Scholar]
  • 4.Mullen KD. Review of the final report of the 1998 Working Party on definition, nomenclature and diagnosis of hepatic encephalopathy. Aliment Pharmacol Ther. 2007;25(suppl 1):11–6. doi: 10.1111/j.1746-6342.2006.03216.x. [DOI] [PubMed] [Google Scholar]
  • 5.Gabuzda GJ, Phillips GB, Davidson CS. Reversible toxic manifestations in patients with cirrhosis of the liver given cation-exchange resins. New Engl J Med. 1952;246:124–30. doi: 10.1056/NEJM195201242460402. [DOI] [PubMed] [Google Scholar]
  • 6.Phillips GB, Schwartz BR, Gabuzda GJ, Davidson CS. The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. N Engl J Med. 1952;247:239–46. doi: 10.1056/NEJM195208142470703. [DOI] [PubMed] [Google Scholar]
  • 7.Shih V. Hereditary urea cycle disorders. In: Grisolla S, Baguena R, Mayor F, editors. The urea cycle. New York: John Wiley & Sons; 1976. pp. 369–70. [Google Scholar]
  • 8.Mitchell RB, Wagner JE, Karp JE, et al. Syndrome of idiopathic hyperammonemia after high-dose chemotherapy: review of nine cases. Am J Med. 1988;85:662–7. doi: 10.1016/S0002-9343(88)80239-0. [DOI] [PubMed] [Google Scholar]
  • 9.Nott L, Price TJ, Pittman K, Patterson K, Fletcher J. Hyperammonemia encephalopathy: An important cause of neurological deterioration following chemotherapy. Leuk Lymphoma. 2007;48:1702–11. doi: 10.1080/10428190701509822. [DOI] [PubMed] [Google Scholar]
  • 10.Samtoy B, DeBeukelaer MM. Ammonia encephalopathy secondary to urinary tract infection with Proteus mirabilis. Pediatrics. 1980;65:294–7. [PubMed] [Google Scholar]
  • 11.Sato S, Yokota C, Toyoda K, Naganuma M, Minematsu K. Hyperammonemic encephalopathy caused by urinary tract infection with urinary retention. Eur J Int Med. 2008;19:e78–9. doi: 10.1016/j.ejim.2007.10.022. [DOI] [PubMed] [Google Scholar]
  • 12.Vossler DG, Wilensky AJ, Cawthon DF, et al. Serum and CSF glutamine levels in valproate-related hyperammonemic encephalopathy. Epilepsia. 2002;43:154–9. doi: 10.1046/j.1528-1157.2002.25001.x. [DOI] [PubMed] [Google Scholar]
  • 13.Segura-Bruna N, Rodriguez-Campello A, Puente V, Roquer J. Valproate-induced hyperammonemic encephalopathy. Acta Neurol Scand. 2006;114:1–7. doi: 10.1111/j.1600-0404.2006.00655.x. [DOI] [PubMed] [Google Scholar]
  • 14.Lamiell JJ, Ducey JP, Freese-Kepczyk BJ, Musio F, Hansberry KL. Essential amino acid-induced adult hyperammonemic encephalopathy and hypophosphatemia. Crit Care Med. 1990;18:451–2. doi: 10.1097/00003246-199004000-00023. [DOI] [PubMed] [Google Scholar]
  • 15.Alonso EM, Squires RH, Whitington PF. In: Acute liver failure in children, in: Liver disease in children. 3rd edit. Suchy FJ, Sokol RJ, Balistreri WF, editors. Philadelphia: Lippincott; 2008. pp. 71–96. [Google Scholar]
  • 16.Lee WM. Acute liver failure. N Engl J Med. 1993;329:1862–72. doi: 10.1056/NEJM199312163292508. [DOI] [PubMed] [Google Scholar]
  • 17.Sherlock S, Dooley J, editors. Diseases of the liver and biliary system. London: Blackwell Science; 1996. pp. 94–5. [Google Scholar]
  • 18.Ferenci P, Herneth A, Steindl P. Newer approaches to therapy of hepatic encephalopathy. Semin Liver Dis. 1996;16:329–38. doi: 10.1055/s-2007-1007245. [DOI] [PubMed] [Google Scholar]
  • 19.Bessman SP. Ammonia metabolism in animals. In: McElroy WD, Glass B, editors. Inorganic nitrogen metabolism. Baltimore, MD: The Johns Hopkins Press; 1956. pp. 408–36. [Google Scholar]
  • 20.Bessman SP. Blood ammonia. Adv Clin Chem. 1959;2:135–80. doi: 10.1016/S0065-2423(08)60310-8. [DOI] [Google Scholar]
  • 21.Adams RD, Foley JM. The neurological disorder associated with liver disease. Res Publ Assoc Res Nerv Ment Dis Proc. 1953;32:198–237. [PubMed] [Google Scholar]
  • 22.McDermott WV, Adams RD. Episodic stupor associated with an Eck fistula in the human with particular reference to the metabolism of ammonia. J Clin Invest. 1954;33:1–9. doi: 10.1172/JCI102862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Fraser CL, Arieff AI. Hepatic encephalopathy. N Engl J Med. 1985;313:865–73. doi: 10.1056/NEJM198510033131406. [DOI] [PubMed] [Google Scholar]
  • 24.Cooper AJL, Plum F. Biochemistry and physiology of brain ammonia. Physiol Rev. 1987;67:440–519. doi: 10.1152/physrev.1987.67.2.440. [DOI] [PubMed] [Google Scholar]
  • 25.Lockwood AH. Ammonia-induced encephalopathy. In: McCandless DW, editor. Cerebral energy metabolism and metabolic encephalopathy. New York: Plenum Press; 1985. pp. 203–27. [Google Scholar]
  • 26.Grisolía S, Felipo V, Miñana M-D, editors. Cirrhosis, hepatic encephalopathy, and ammonium toxicity. advances in experimental medicine and biology. New York: Plenum Press; 1990. [Google Scholar]
  • 27.Bengtsson F, Jeppsson, Almdal T, Vilstrup H, editors. Progress in hepatic encephalopathy and metabolic nitrogen exchange. Boca Raton, FL: CRC Press; 1991. [Google Scholar]
  • 28.Conn HO, Bircher J, editors. Hepatic encephalopathy. Bloomington, IL: Medi-Ed Press; 1994. pp. 43–61. [Google Scholar]
  • 29.Capocaccia L, Merli M, Riggio O, editors. Advances in hepatic encephalopathy and metabolic nitrogen exchange. Boca Raton, FL: CRC Press; 1995. [Google Scholar]
  • 30.Felipo V, Butterworth RF. Neurobiology of ammonia. Prog Neurobiol. 2002;67:259–79. doi: 10.1016/S0301-0082(02)00019-9. [DOI] [PubMed] [Google Scholar]
  • 31.Felipo V, Butterworth RF. Mitochondrial dysfunction in acute hyperammonemia. Neurochem Int. 2002;40:487–91. doi: 10.1016/S0197-0186(01)00119-X. [DOI] [PubMed] [Google Scholar]
  • 32.Lockwood AH. Blood ammonia levels and hepatic encephalopathy. Metab Brain Dis. 2004;19:345–9. doi: 10.1023/B:MEBR.0000043980.74574.eb. [DOI] [PubMed] [Google Scholar]
  • 33.Brusilow SW. Determination of urine orotate and orotidine and plasma ammonium. In: Hommes FA, editor. Techniques in diagnostic human biochemical genetics: a laboratory manual. New York: Wiley-Liss; 1991. pp. 345–57. [Google Scholar]
  • 34.Batshaw ML, Brusilow S, Waber L, et al. Treatment of inborn errors of urea synthesis. N Engl J Med. 1982;306:1387–92. doi: 10.1056/NEJM198206103062303. [DOI] [PubMed] [Google Scholar]
  • 35.Msall M, Batshaw L, Suss R, Brusilow SW, Mellits ED. Neurologic outcome in children with inborn errors of urea synthesis. Outcome of urea cycle enzymopathies. N Engl J Med. 1984;310:1500–5. doi: 10.1056/NEJM198406073102304. [DOI] [PubMed] [Google Scholar]
  • 36.Butterworth RF, Giguère JF, Michaud J, Lavoie J, Layrargues GP. Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol. 1987;6:1–12. doi: 10.1007/BF02833598. [DOI] [PubMed] [Google Scholar]
  • 37.Brusilow SW, Maestri NE. Urea cycle disorders: Diagnosis, pathophysiology, and therapy. Adv Pediatr. 1996;43:127–70. [PubMed] [Google Scholar]
  • 38.Butterworth RF. Complications of cirrhosis. III hepatic encephalopathy. J Hepatol. 2000;32:171–80. doi: 10.1016/S0168-8278(00)80424-9. [DOI] [PubMed] [Google Scholar]
  • 39.Häussinger D, Kircheis G, Fischer R, Schleiess F, vom Dahl S. Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low grade cerebral edema? J Hepatol. 2000;32:1035–8. doi: 10.1016/S0168-8278(00)80110-5. [DOI] [PubMed] [Google Scholar]
  • 40.Weissenborn K, Ennen JC, Schomerus H, Rückert N, Hecker H. Neuropsychological characterization of hepatic encephalopathy. J Hepatol. 2001;34:768–73. doi: 10.1016/S0168-8278(01)00026-5. [DOI] [PubMed] [Google Scholar]
  • 41.Brusilow SW. Hyperammonemic encephalopathy. Medicine. 2002;81:240–9. doi: 10.1097/00005792-200205000-00007. [DOI] [PubMed] [Google Scholar]
  • 42.Albrecht J, Jones EA. Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J Neurol Sci. 1999;30:138–46. doi: 10.1016/S0022-510X(99)00169-0. [DOI] [PubMed] [Google Scholar]
  • 43.Jalan R, Shawcross D, Davis D. The molecular pathogenesis of hepatic encephalopathy. Int J Biochem Cell Biol. 2003;35:1175–81. doi: 10.1016/S1357-2725(02)00396-5. [DOI] [PubMed] [Google Scholar]
  • 44.Blei AT. Brain edema in acute liver failure. Crit Care Clin. 2008;24:99–114. doi: 10.1016/j.ccc.2007.11.001. [DOI] [PubMed] [Google Scholar]
  • 45.Zwingmann C, Butterworth R. An update on brain glutamine synthesis and its relation to cell-specific energy metabolism in the hyperammonemic brain: Further studies using NMR spectroscopy. Neurochem Int. 2005;47:19–30. doi: 10.1016/j.neuint.2005.04.003. [DOI] [PubMed] [Google Scholar]
  • 46.Maestri NE, Clissold D, Brusilow SW. Neonatal onset ornithine transcarbamylase deficiency: A retrospective analysis. J Pediatr. 1999;134:268–72. doi: 10.1016/S0022-3476(99)70448-8. [DOI] [PubMed] [Google Scholar]
  • 47.Lavoie J, Giguère JF, Layrargues GP, Butterworth RF. Amino acid changes in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. J Neurochem. 1987;49:692–7. doi: 10.1111/j.1471-4159.1987.tb00949.x. [DOI] [PubMed] [Google Scholar]
  • 48.Connelly A, Cross JH, Gadian DG, Hunter JV, Kirkham FJ, Leonard JV. Magnetic resonance spectroscopy shows increased glutamine in omithine carbamoyl transferase deficiency. Pediatr Res. 1993;33:77–81. doi: 10.1203/00006450-199301000-00016. [DOI] [PubMed] [Google Scholar]
  • 49.Tarasów E, Panasiuk A, Siergiejczyk L, et al. MR and 1H MR spectroscopy of the brain in patients with liver cirrhosis and early stages of hepatic encephalopathy. Hepatogastroenterology. 2003;50:2149–53. [PubMed] [Google Scholar]
  • 50.Wong YC, Au WL, Xu M, Ye J, Lim CC. Magnetic resonance spectroscopy in adult-onset citrullinemia: elevated glutamine levels in comatose patients. Arch Neurol. 2007;64:1034–7. doi: 10.1001/archneur.64.7.1034. [DOI] [PubMed] [Google Scholar]
  • 51.Ross BD, Jacobson S, Villamil F, et al. Subclinical hepatic encephalopathy: proton MR spectroscopic abnormalities. Radiology. 1994;193:457–63. doi: 10.1148/radiology.193.2.7972763. [DOI] [PubMed] [Google Scholar]
  • 52.Córdoba J, Sanpedro F, Alonso J, Rovira A. 1H magnetic resonance in the study of hepatic encephalopathy in humans. Metab Brain Dis. 2002;17:415–29. doi: 10.1023/A:1021926405944. [DOI] [PubMed] [Google Scholar]
  • 53.Shawcross DL, Balata S, Olde Damink SWM, et al. Low myoinositol and high glutamine levels in brain are associated with neuropsychological deterioration after induced hyperammonemia. Am J Physiol Gastrointest Liver Physiol. 2004;287:G503–9. doi: 10.1152/ajpgi.00104.2004. [DOI] [PubMed] [Google Scholar]
  • 54.Kojic J, Robertson PL, Quint DJ, Martin DM, Pang Y, Sundgren PC. Brain glutamine by MRS in a patient with urea cycle disorder and coma. Pediatr Neurol. 2005;32:143–6. doi: 10.1016/j.pediatrneurol.2004.07.013. [DOI] [PubMed] [Google Scholar]
  • 55.Swain MS, Blei AT, Butterworth RF, Kraig RP. Intracellular pH rises and astrocytes swell after portacaval anastomosis in rats. Am J Physiol. 1991;261:R1491–6. doi: 10.1152/ajpregu.1991.261.6.R1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Kanamori K, Ross BD. Glial alkalinization detected in vivo by 1H-15N heteronuclear multiple-quantum coherence-transfer NMR in severely hyperammonemic rat. J Neurochem. 1997;68:1209–20. doi: 10.1046/j.1471-4159.1997.68031209.x. [DOI] [PubMed] [Google Scholar]
  • 57.Cooper AJL, McDonald JM, Gelbard AS, Gledhill RF, Duffy TE. The metabolic fate of 13N-labeled ammonia in rat brain. J Biol Chem. 1979;254:4982–92. [PubMed] [Google Scholar]
  • 58.Raichle ME, Larson KB. The significance of the NH3-NH4+ equilibrium on the passage of 13N-ammonia from blood to brain. A new regional residue detection model. Circ Res. 1981;48:913–37. doi: 10.1161/01.res.48.6.913. [DOI] [PubMed] [Google Scholar]
  • 59.Lockwood AH, Yap EW, Wong WH. Cerebral ammonia metabolism in patients with severe liver disease and minimal hepatic encephalopathy. J Cereb Blood Flow Metab. 1991;11:337–41. doi: 10.1038/jcbfm.1991.67. [DOI] [PubMed] [Google Scholar]
  • 60.Weigle CG, Koehler RC, Brusilow SW, Traystman RJ. Arterial pH modulation of regional cerebral blood flow during hyperammonemia in dogs. Am J Physiol Heart Circ Physiol. 1990;259:H34–41. doi: 10.1152/ajpheart.1990.259.1.H34. [DOI] [PubMed] [Google Scholar]
  • 61.Sørensen M, Keiding S. New findings on cerebral ammonia uptake in HE using functional 13N-ammonia PET. Metab Brain Dis. 2007;22:277–84. doi: 10.1007/s11011-007-9066-1. [DOI] [PubMed] [Google Scholar]
  • 62.Ahl B, Weissenborn K, van den Hoff J, et al. Regional differences in cerebral blood flow and cerebral ammonia metabolism in patients with cirrhosis. Hepatology. 2004;40:73–9. doi: 10.1002/hep.20290. [DOI] [PubMed] [Google Scholar]
  • 63.Gibson GE, Zimber A, Krook L, Richardson EP, Visek WJ. Brain histology and behavior of mice injected with urease. J Neuropath Exp Neurol. 1974;33:201–21. doi: 10.1097/00005072-197404000-00001. [DOI] [PubMed] [Google Scholar]
  • 64.Hindfelt B, Plum F, Duffy TE. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest. 1977;59:386–96. doi: 10.1172/JCI108651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Gjedde A, Lockwood AH, Duffy TE, Plum F. Cerebral blood flow and metabolism in chronically hyperammonemic rats: effect of an acute ammonia challenge. Ann Neurol. 1978;3:325–30. doi: 10.1002/ana.410030409. [DOI] [PubMed] [Google Scholar]
  • 66.Giguère JF, Butterworth RF. Amino acid changes in regions of the CNS in relation to function in experimental portal-systemic encephalopathy. Neurochem Res. 1984;9:1309–21. doi: 10.1007/BF00973042. [DOI] [PubMed] [Google Scholar]
  • 67.Hawkins RA, Jessy J. Hyperammonaemia does not impair brain function in the absence of glutamine synthesis. Biochem J. 1991;277:697–703. doi: 10.1042/bj2770697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Pasantes-Morales H, Franco R. In: Astrocyte cellular swelling: Mechanisms and relevance to brain edema, in: The Role of Glia in Neurotoxicity. 2nd Edit. Aschner M, Costa LG, editors. Boca Raton, FL: CRC Press; 2004. pp. 173–90. [Google Scholar]
  • 69.Okada M, Nakao R, Hosoi R, et al. In vivo monitoring of extracellular 13N-glutamine derived from blood-bome 13N-ammonia in rat striatum using microdialysis with radio-LC method. J Neurosci Methods. 2009;184:37–41. doi: 10.1016/j.jneumeth.2009.07.012. [DOI] [PubMed] [Google Scholar]
  • 70.Cooper AJL, Mora SN, Cruz NF, Gelbard AS. Cerebral ammonia metabolism in hyperammonemic rats. J Neurochem. 1985;44:1716–23. doi: 10.1111/j.1471-4159.1985.tb07159.x. [DOI] [PubMed] [Google Scholar]
  • 71.Bessman SP, Bessman AN. The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J Clin Invest. 1955;34:622–8. doi: 10.1172/JCI103111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Shorey J, McCandless DW, Schenker S. Cerebral α-ketoglutarate in ammonia intoxication. Gastroenterology. 1967;53:706–11. [PubMed] [Google Scholar]
  • 73.Cooper AJL, Vergara F, Duffy TE. Cerebral glutamine synthetase. In: Hertz L, Kvamme E, McGeer EG, Schousboe A, editors. Glutamine, glutamate and GABA in the central nervous system. New York: Alan R. Liss; 1983. pp. 77–93. [Google Scholar]
  • 74.Fitzpatrick SM, Hetherington HP, Behar KL, Shulman RG. Effects of acute hyperammonemia on cerebral amino acid metabolism and pHi; in vivo, measured by 1H and 31P nuclear magnetic resonance. J Neurochem. 1989;52:741–9. doi: 10.1111/j.1471-4159.1989.tb02517.x. [DOI] [PubMed] [Google Scholar]
  • 75.Hirata T, Koehler RC, Brusilow SW, Traystman RJ. Reservation of cerebral blood flow responses to hypoxia and arterial pressure alterations in hyperammonemic rats. J Cereb Blood Flow Metab. 1995;15:835–44. doi: 10.1038/jcbfm.1995.104. [DOI] [PubMed] [Google Scholar]
  • 76.Oldendorf WH, Szabo J. Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am J Physiol. 1976;230:94–8. doi: 10.1152/ajplegacy.1976.230.1.94. [DOI] [PubMed] [Google Scholar]
  • 77.Berl S, Takagaki G, Clarke DD, Waelsch H. Carbon dioxide fixation in the brain. J Biol Chem. 1962;237:2570–3. [PubMed] [Google Scholar]
  • 78.Zwingmann C. The anaplerotic flux and ammonia detoxification in hepatic encephalopathy. Metab Brain Dis. 2007;22:235–49. doi: 10.1007/s11011-007-9069-y. [DOI] [PubMed] [Google Scholar]
  • 79.Johansen ML, Bak LK, Schousboe A, et al. The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes. Neurochem Int. 2007;50:1042–51. doi: 10.1016/j.neuint.2007.01.009. [DOI] [PubMed] [Google Scholar]
  • 80.Howse DC, Duffy TE. Control of the redox state of the pyridine nucleotides in the rat cerebral cortex. Effect of electroshock-induced seizures. J Neurochem. 1975;24:935–40. doi: 10.1111/j.1471-4159.1975.tb03658.x. [DOI] [PubMed] [Google Scholar]
  • 81.García-Espinosa MA, Wallin R, Hutson SM, Sweatt AJ. Widespread neuronal expression of branched-chain aminotransferase in the CNS: implications for leucine/glutamate metabolism and for signaling by amino acids. J Neurochem. 2007;100:1458–68. doi: 10.1111/j.1471-4159.2006.04332.x. [DOI] [PubMed] [Google Scholar]
  • 82.Hawkins RA, Jessy J, Mans AM, DeJoseph MR. Effects of reducing brain glutamine synthesis on metabolic symptoms of hepatic encephalopathy. J Neurochem. 1993;60:1000–6. doi: 10.1111/j.1471-4159.1993.tb03247.x. [DOI] [PubMed] [Google Scholar]
  • 83.Kanamori K, Ross BD, Kondrat RW. Rate of glutamate synthesis from leucine in rat brain measured in vivo by 15N NMR. J Neurochem. 1998;70:1304–15. doi: 10.1046/j.1471-4159.1998.70031304.x. [DOI] [PubMed] [Google Scholar]
  • 84.Shen J, Sibson NR, Cline G, Behar KL, Rothman DL, Shulman RG. 15N-NMR spectroscopy studies of ammonia transport and glutamine synthesis in the hyperammonemic rat brain. Dev Neurosci. 1998;20:434–43. doi: 10.1159/000017341. [DOI] [PubMed] [Google Scholar]
  • 85.Sibson NR, Mason GF, Shen J, et al. In vivo13C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during [2-13C]glucose infusion. J Neurochem. 2001;76:975–89. doi: 10.1046/j.1471-4159.2001.00074.x. [DOI] [PubMed] [Google Scholar]
  • 86.McKhann GM, Tower DB. Ammonia toxicity and cerebral oxidative metabolism. Am J Physiol. 1961;200:420–4. doi: 10.1152/ajplegacy.1961.200.3.420. [DOI] [PubMed] [Google Scholar]
  • 87.Lai JCK, Cooper AJL. Brain α-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution and effects of inhibitors. J Neurochem. 1986;47:1376–86. doi: 10.1111/j.1471-4159.1986.tb00768.x. [DOI] [PubMed] [Google Scholar]
  • 88.Lowry OH, Passonneau JV. Kinetic evidence for multiple binding sites on phosphofructokinase. J Biol Chem. 1966;241:2268–79. [PubMed] [Google Scholar]
  • 89.Fitzpatrick SM, Cooper AJL, Duffy TE. Use of β-methylene-DL-aspartate to assess the role of aspartate aminotransferase in cerebral oxidative metabolism. J Neurochem. 1983;41:1370–83. doi: 10.1111/j.1471-4159.1983.tb00835.x. [DOI] [PubMed] [Google Scholar]
  • 90.Bjerring PN, Hauerberg J, Frederiksen HJ, et al. Cerebral glutamine concentration and lactate-pyruvate ratio in patients with acute liver failure. Neurocrit Care. 2008;9:3–7. doi: 10.1007/s12028-008-9060-4. [DOI] [PubMed] [Google Scholar]
  • 91.Barbiroli B, Gaiani S, Lodi R, et al. Abnormal brain energy metabolism shown by in vivo phosphorus magnetic resonance spectroscopy in patients with chronic liver disease. Brain Res Bull. 2002;59:75–82. doi: 10.1016/S0361-9230(02)00839-0. [DOI] [PubMed] [Google Scholar]
  • 92.Weissenborn K, Bokemeyer M, Ahl B, et al. Functional imaging of the brain in patients with liver cirrhosis. Metab Brain Dis. 2004;19:269–80. doi: 10.1023/B:MEBR.0000043976.17500.8e. [DOI] [PubMed] [Google Scholar]
  • 93.Cavanagh JB, Kyu MH. Type II Alzheimer change experimentally produced in astrocytes in the rat. J Neurol Sci. 1971;12:63–75. doi: 10.1016/0022-510X(71)90252-8. [DOI] [PubMed] [Google Scholar]
  • 94.Cole M, Rutherford RB, Smith FO. Experimental ammonia encephalopathy in the primate. Arch Neurol. 1972;26:130–6. doi: 10.1001/archneur.1972.00490080048004. [DOI] [PubMed] [Google Scholar]
  • 95.Zamora AJ, Cavanagh JB, Kyu MH. Ultrastructural responses of the astrocytes to portacaval anastomosis in the rat. J Neurol Sci. 1973;18:25–45. doi: 10.1016/0022-510X(73)90018-X. [DOI] [PubMed] [Google Scholar]
  • 96.Norenberg MD, Lapham LW. The astrocyte response in experimental portal systemic encephalopathy. An electron microscopic study. J Neuropath Exp Neurol. 1974;33:422–35. doi: 10.1097/00005072-197407000-00008. [DOI] [PubMed] [Google Scholar]
  • 97.Norenberg MD. A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy. Progression and reversal of the disorder. Lab Invest. 1977;36:618–27. [PubMed] [Google Scholar]
  • 98.Voorhies TM, Ehrlich ME, Duffy TE, Petito CK, Plum F. Acute hyperammonemia in the young primate: physiologic and neuropathologic correlates. Pediatr Res. 1983;17:970–5. doi: 10.1203/00006450-198312000-00009. [DOI] [PubMed] [Google Scholar]
  • 99.Traber PG, Dal Canto M, Ganger DR, Blei AT. Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced hepatic failure: ultrastructure and integrity of the blood-brain barrier. Hepatology. 1987;7:1272–7. doi: 10.1002/hep.1840070616. [DOI] [PubMed] [Google Scholar]
  • 100.Norenberg MD. Astrocyte responses to CNS injury. J Neuropath Exp Neurol. 1994;53:213–20. doi: 10.1097/00005072-199405000-00001. [DOI] [PubMed] [Google Scholar]
  • 101.Willard-Mack CL, Koehler RC, Hirata T, et al. Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience. 1996;71:589–99. doi: 10.1016/0306-4522(95)00462-9. [DOI] [PubMed] [Google Scholar]
  • 102.Martinez A. Electron microscopy in human hepatic encephalopathy. Acta Neuropath. 1968;11:82–6. doi: 10.1007/BF00692797. [DOI] [PubMed] [Google Scholar]
  • 103.Partin JS, McAdams AJ, Partin JC, Schubert WK, McLaurin RL. Brain ultrastructure in Reye’s disease — II. Acute injury and recovery process in three children. J Neuropathol Exp Neurol. 1978;37:796–819. doi: 10.1097/00005072-197811000-00007. [DOI] [PubMed] [Google Scholar]
  • 104.Bruten CJ, Corsellis JAN, Russell A. Hereditary hyperammonaemia. Brain. 1970;93:423–34. doi: 10.1093/brain/93.2.423. [DOI] [PubMed] [Google Scholar]
  • 105.Gregorios JB, Mozes LW, Norenberg L-OB, Norenberg MD. Morphologic effects of ammonia on primary astrocyte cultures: II. Electron microscopic studies. J Neuropath Exp Neurol. 1985;44:404–14. doi: 10.1097/00005072-198507000-00004. [DOI] [PubMed] [Google Scholar]
  • 106.Martinez-Hernandez A, Bell KP, Norenberg MD. Glutamine synthetase: glial localization in brain. Science. 1977;195:1356–8. doi: 10.1126/science.14400. [DOI] [PubMed] [Google Scholar]
  • 107.Norenberg MD, Martinez-Hernandez A. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 1979;161:303–10. doi: 10.1016/0006-8993(79)90071-4. [DOI] [PubMed] [Google Scholar]
  • 108.Keiding S, Sørensen M, Bender D, Munk OL, Ott P, Vilstrup H. Brain metabolism of 13N-ammonia during acute hepatic encephalopathy in cirrhosis measured by positron emission tomography. Hepatology. 2006;43:42–50. doi: 10.1002/hep.21001. [DOI] [PubMed] [Google Scholar]
  • 109.Sørensen M, Keiding S. New findings on cerebral ammonia uptake in HE using functional 13N-ammonia PET. Metab Brain Dis. 2007;22:277–84. doi: 10.1007/s11011-007-9066-1. [DOI] [PubMed] [Google Scholar]
  • 110.Sørensen M, Munk OL, Keiding S. Backflux of ammonia from brain to blood in human subjects with and without hepatic encephalopathy. Metab Brain Dis. 2009;24:237–42. doi: 10.1007/s11011-008-9126-1. [DOI] [PubMed] [Google Scholar]
  • 111.Keiding S, Sørensen M, Munk OL, Bender D. Human 13N-ammonia PET studies: the importance of measuring 13N-ammonia metabolites in blood. Metab Brain Dis. 2010;25:49–56. doi: 10.1007/s11011-010-9181-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.De Graaf AA, Deutz NEP, Bosman DK, Chamuleau RA, de Haan JG, Bovee WM. The use of in vivo proton NMR to study the effects of hyperammonemia in the rat cerebral cortex. NMR Biomed Med. 1991;4:31–7. doi: 10.1002/nbm.1940040106. [DOI] [PubMed] [Google Scholar]
  • 113.Tsukada Y, Kanamatsu T, Watanabe H, Okamoto K. In vivo investigation of glutamate-glutamine metabolism in hyperammonemic monkey brain using 13C-magnetic resonance spectroscopy. Dev Neurosci. 1998;20:427–33. doi: 10.1159/000017340. [DOI] [PubMed] [Google Scholar]
  • 114.Zwingmann C. Nuclear magnetic resonance studies of energy metabolism and glutamine shunt in hepatic encephalopathy and hyperammonemia. J Neurosci Res. 2007;85:3429–42. doi: 10.1002/jnr.21445. [DOI] [PubMed] [Google Scholar]
  • 115.Vergara F, Duffy TE, Plum F. α-Ketoglutaramate, a neurotoxic agent in hepatic coma. Trans Assoc Am Physicians. 1973;86:255–63. [PubMed] [Google Scholar]
  • 116.Vergara E, Plum F, Duffy TE. α-Ketoglutaramate: increased concentrations in the cerebrospinal fluid of patients in hepatic coma. Science. 1974;183:81–3. doi: 10.1126/science.183.4120.81. [DOI] [PubMed] [Google Scholar]
  • 117.Duffy TE, Vergara F, Plum F. α-Ketoglutaramate in hepatic encephalopathy. Res Publ Assoc Res Nerv Ment Dis. 1974;53:39–52. [PubMed] [Google Scholar]
  • 118.Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology. 2006;44:788–94. doi: 10.1002/hep.21357. [DOI] [PubMed] [Google Scholar]
  • 119.Murthy CRK, Rama Rao KV, Bai G, Norenberg MD. production of free radicals in primary cultures of rat astrocytes. J Neurosci Res. 2001;66:282–8. doi: 10.1002/jnr.1222. [DOI] [PubMed] [Google Scholar]
  • 120.Rama Rao KV, Jayakumar AR, Norenberg MD. Ammonia neurotoxicity: role of the mitochondrial permeability transition. Metab Brain Dis. 2003;18:113–27. doi: 10.1023/A:1023858902184. [DOI] [PubMed] [Google Scholar]
  • 121.Jayakumar AR, Rama Rao KV, Schousboe A, Norenberg MD. Glutamine-induced free radical production in cultured astrocytes. Glia. 2004;46:296–301. doi: 10.1002/glia.20003. [DOI] [PubMed] [Google Scholar]
  • 122.Jayakumar AR, Rao KV, Murthy ChR, Norenberg MD. Glutamine in the mechanism of ammonia-induced astrocyte swelling. Neurochem Int. 2006;48:623–8. doi: 10.1016/j.neuint.2005.11.017. [DOI] [PubMed] [Google Scholar]
  • 123.Jayakumar AR, Rama Rao KV, Tong XY, Norenberg MD. Calcium in the mechanism of ammonia-induced astrocyte swelling. J Neurochem. 2009;109(suppl 1):252–7. doi: 10.1111/j.1471-4159.2009.05842.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Norenberg MD, Rao KV, Jayakumar AR. Mechanisms of ammonia-induced astrocyte swelling. Met Brain Dis. 2005;20:303–18. doi: 10.1007/s11011-005-7911-7. [DOI] [PubMed] [Google Scholar]
  • 125.Pichilli VBR, Rao KV, Jayakumar AR, Norenberg MD. Inhibition of glutamine transport into mitochondria protects astrocytes from ammonia toxicity. Glia. 2007;55:801–9. doi: 10.1002/glia.20499. [DOI] [PubMed] [Google Scholar]
  • 126.Kvamme E, Svenneby G, Hertz L, Schousboe A. Properties of phosphate activated glutaminase in astrocytes cultured from mouse brain. Neurochem Res. 1982;7:761–70. doi: 10.1007/BF00965528. [DOI] [PubMed] [Google Scholar]
  • 127.Olalla L, Gutiérrez A, Jiménez AJ, et al. Expression of the scaffolding PDZ protein glutaminase-interacting protein in mammalian brain. J Neurosci Res. 2008;86:281–92. doi: 10.1002/jnr.21505. [DOI] [PubMed] [Google Scholar]
  • 128.Kvamme E, Nissen-Meyer LS, Roberg BA, Torgner IA. Novel form of phosphate activated glutaminase in cultured astrocytes and human neuroblastoma cells, PAG in brain pathology and localization in the mitochondria. Neurochem Res. 2008;33:1341–5. doi: 10.1007/s11064-008-9589-9. [DOI] [PubMed] [Google Scholar]
  • 129.Kanamori K, Ross BD. In vivo activity of glutaminase in the brain of hyperammonaemic rats measured by 15N nuclear magnetic resonance. Biochem J. 1995;305:329–36. doi: 10.1042/bj3050329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Matheson DF, Van Den Berg CJ. Ammonia and brain glutamine: inhibition of glutamine degradation by ammonia. Biochem Soc Trans. 1975;3:525–8. doi: 10.1042/bst0030525. [DOI] [PubMed] [Google Scholar]
  • 131.Wallace DR, Dawson R. Ammonia regulation of phosphate-activated glutaminase displays regional variation and impairment in the brain of aged rats. Neurochem Res. 1992;17:1113–22. doi: 10.1007/BF00967289. [DOI] [PubMed] [Google Scholar]
  • 132.Warren KS, Schenker S. Effect of an inhibitor of glutamine synthesis (methionine sulfoximine) on ammonia toxicity and metabolism. J Lab Clin Med. 1964;64:442–9. [PubMed] [Google Scholar]
  • 133.Kosenko E, Kaminsky Y, Solomadin I, et al. Acute ammonia neurotoxicity in vivo involves increase in cytoplasmic protein P53 without alterations in other markers of apoptosis. J Neurosci Res. 2007;85:2491–9. doi: 10.1002/jnr.21385. [DOI] [PubMed] [Google Scholar]
  • 134.Leung AWC, Halestrap AP. Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta. 2008;1777:946–52. doi: 10.1016/j.bbabio.2008.03.009. [DOI] [PubMed] [Google Scholar]
  • 135.Elgudin L, Hall Y, Schubert D. Ammonia induced encephalopathy from valproic acid in a bipolar patient: case report. Int J Psychiatry Med. 2003;22:91–6. doi: 10.2190/XW8E-Q283-4429-QL71. [DOI] [PubMed] [Google Scholar]
  • 136.Mak CM, Siu TS, Lam CW, et al. Complete recovery from acute encephalopathy of late-onset omithine transcarbamylase deficiency in a 3-year-old boy. J Inher Metab Dis. 2007;30:981–981. doi: 10.1007/s10545-007-0692-x. [DOI] [PubMed] [Google Scholar]
  • 137.Mans AM, Biebuyck JF, Hawkins RA. Ammonia selectively stimulates neutral amino acid transport across blood-brain barrier. Am J Physiol. 1983;245:C74–7. doi: 10.1152/ajpcell.1983.245.1.C74. [DOI] [PubMed] [Google Scholar]
  • 138.Brusilow SW. Inborn errors of ureagenesis. In: Lloyd JK, Scriver CR, editors. Genetic and metabolic disease in pediatrics. London: Butterworths; 1985. pp. 140–65. [Google Scholar]
  • 139.Watson AJ, Chambers T, Karp JE, Risch VR, Walker WG, Brusilow SW. Transient idiopathic hyperammonaemia in adults. Lancet. 1985;2:1271–4. doi: 10.1016/S0140-6736(85)91554-5. [DOI] [PubMed] [Google Scholar]
  • 140.Brusilow SW, Traystman RJ. Hepatic encephalopathy. N Engl J Med. 1986;314:786–7. [PubMed] [Google Scholar]
  • 141.Schenker S, Brady CE. Pathogenesis of hepatic encephalopathy. In: Conn HO, Bircher J, editors. Hepatic encephalopathies. Bloomington, IL: Med-Ed Press; 1994. pp. 442–6. [Google Scholar]
  • 142.Hindfelt B. The effect of acute ammonia intoxication upon the brain energy state in rats pretreated with methionine D-L-sulphoximine. Scand J Clin Invest. 1973;31:289–99. doi: 10.3109/00365517309082433. [DOI] [PubMed] [Google Scholar]
  • 143.Hindfelt B, Plum F. L-methionine-D,L-sulphoximine and acute ammonia toxicity. J Pharm Pharmac. 1975;27:456–8. doi: 10.1111/j.2042-7158.1975.tb09483.x. [DOI] [PubMed] [Google Scholar]
  • 144.Takahashi H, Koehler RC, Brusilow SW, Traystman RJ. Glutamine synthetase inhibition prevents cerebral oedema during hyperammonemia. Acta Neurochir. 1990;51:346–7. doi: 10.1007/978-3-7091-9115-6_117. [DOI] [PubMed] [Google Scholar]
  • 145.Takahashi H, Koehler RC, Brusilow SW, Traystman RJ. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol. 1991;261:H825–9. doi: 10.1152/ajpheart.1991.261.3.H825. [DOI] [PubMed] [Google Scholar]
  • 146.Sugimoto H, Koehler RC, Wilson DA, Brusilow SW, Traystman RJ. Methionine sulfoximine, a glutamine synthetase inhibitor, attenuates increased extracellular potassium activity during acute hyperammonemia. J Cerebr Blood Flow Metab. 1997;17:44–9. doi: 10.1097/00004647-199701000-00006. [DOI] [PubMed] [Google Scholar]
  • 147.Blei AT, Olafsson S, Therrien G, Butterworth RF. Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology. 1994;19:1437–44. doi: 10.1002/hep.1840190619. [DOI] [PubMed] [Google Scholar]
  • 148.Takahashi H, Koehler RC, Hirata T, Brusilow SW, Traystman RJ. Restoration of cerebrovascular CO2 responsivity by glutamine synthesis inhibition in hyperammonemic rats. Circ Res. 1992;71:1220–30. doi: 10.1161/01.res.71.5.1220. [DOI] [PubMed] [Google Scholar]
  • 149.Hirata T, Koehler RC, Kawaguchi T, Brusilow SW, Traystman RJ. Impaired pial arteriolar reactivity to hypercapnia during hyperammonemia depends on glutamine synthesis. Stroke. 1996;27:729–36. doi: 10.1161/01.str.27.4.729. [DOI] [PubMed] [Google Scholar]
  • 150.Hirata T, Kawaguchi T, Brusilow SW, Traytsman RJ, Koehler RC. Preserved hypocapnic pial arteriolar constriction during hyperammonemia by glutamine synthetase inhibition. Am J Physiol. 1999;276:H456–63. doi: 10.1152/ajpheart.1999.276.2.H456. [DOI] [PubMed] [Google Scholar]
  • 151.Kawaguchi T, Brusilow SW, Traystman RJ, Koehler RC. Glutamine-dependent inhibition of pial arteriolar dilation to acetylcholine with and without hyperammonemia in the rat. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1612–9. doi: 10.1152/ajpregu.00783.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Tanigami H, Rebel A, Martin LJ, et al. Effect of glutamine synthetase inhibition on astrocyte swelling and altered astroglial protein expression during hyperammonemia in rats. Neuroscience. 2005;131:437–49. doi: 10.1016/j.neuroscience.2004.10.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Jonung T, Rigotti P, James JH, Brackett K, Fischer JE. Effect of hyperammonemia and methionine sulfoximine on the kinetic parameters of blood-brain transport of leucine and phenylalanine. J Neurochem. 1985;45:308–18. doi: 10.1111/j.1471-4159.1985.tb05508.x. [DOI] [PubMed] [Google Scholar]
  • 154.Miller JD. Volume and pressure in the craniospinal axis. Clin Neurosurg. 1975;22:76–105. doi: 10.1093/neurosurgery/22.cn_suppl_1.76. [DOI] [PubMed] [Google Scholar]
  • 155.Mokri B. The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology. 2001;56:1746–8. doi: 10.1212/wnl.56.12.1746. [DOI] [PubMed] [Google Scholar]
  • 156.Oberheim NA, Wang X, Goldman S, Nedergaard M. Astrocytic complexity distinguishes the human brain. Trends Neurosci. 2006;29:547–53. doi: 10.1016/j.tins.2006.08.004. [DOI] [PubMed] [Google Scholar]
  • 157.Zwingmann C, Chatauret N, Rose C, Leibfritz D, Butterworth RF. Selective alterations of brain osmolytes in acute liver failure: protective effect of mild hypothermia. Brain Res. 2004;999:118–23. doi: 10.1016/j.brainres.2003.11.048. [DOI] [PubMed] [Google Scholar]
  • 158.Maestri NE, McGowan KD, Brusilow SW. Plasma glutamine concentration: a guide in the management of urea cycle disorders. J Pediatr. 1992;121:259–61. doi: 10.1016/S0022-3476(05)81200-4. [DOI] [PubMed] [Google Scholar]
  • 159.Tuchman M, Yudkoff M. Blood levels of ammonia and nitrogen scavenging amino acids in patients with inherited hyperammonemia. Mol Genet Metab. 1999;66:10–5. doi: 10.1006/mgme.1998.2783. [DOI] [PubMed] [Google Scholar]
  • 160.Tofteng F, Hauerberg J, Hansen BA, Pedersen CB, Jørgensen L, Larsen FS. Persistent arterial hyperammonemia increases the concentration of glutamine and alanine in the brain and correlates with intracranial pressure in patients with fulminant hepatic failure. J Cereb Blood Flow Metab. 2006;26:21–7. doi: 10.1038/sj.jcbfm.9600168. [DOI] [PubMed] [Google Scholar]
  • 161.Rovira A, Alonso J, Córdoba J. MR imaging findings in hepatic encephalopathy. AJNR Am J Neuroradiol. 2008;29:1612–21. doi: 10.3174/ajnr.A1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Lodi R, Tonon C, Stracciari A, et al. Diffusion MRI shows increased water apparent diffusion coefficient in the brains of cirrhotics. Neurology. 2004;62:762–6. doi: 10.1212/01.wnl.0000113796.30989.74. [DOI] [PubMed] [Google Scholar]
  • 163.Kale RA, Gupta RK, Saraswat VA, et al. Demonstration of interstitial cerebral edema with diffusion tensor MR imaging in type C hepatic encephalopathy. Hepatology. 2006;43:698–706. doi: 10.1002/hep.21114. [DOI] [PubMed] [Google Scholar]
  • 164.Miese F, Kircheis G, Wittsack HJ, et al. 1H-MR spectroscopy, magnetization transfer, and diffusion-weighted imaging in alcoholic and nonalcoholic patients with cirrhosis with hepatic encephalopathy. AJNR Am J Neuroradiol. 2006;27:1019–26. [PMC free article] [PubMed] [Google Scholar]
  • 165.Behar KL, Rothman DL. In vivo nuclear magnetic resonance studies of glutamate-γ-aminobutyric acid-glutamine cycling in rodent and human cortex: the central role of glutamine. J Nut. 2001;131:2498S–504S. doi: 10.1093/jn/131.9.2498S. [DOI] [PubMed] [Google Scholar]
  • 166.Bröer A, Deitmer JW, Bröer S. Astroglial glutamine transport by system N is upregulated by glutamate. Glia. 2004;48:298–310. doi: 10.1002/glia.20081. [DOI] [PubMed] [Google Scholar]
  • 167.Schneider HP, Bröer S, Bröer A, Deitmer JW. Heterologous expression of the glutamine transporter SNAT3 in Xenopus oocytes is associated with four modes of uncoupled transport. J Biol Chem. 2007;282:3788–98. doi: 10.1074/jbc.M609452200. [DOI] [PubMed] [Google Scholar]
  • 168.Bröer S, Schneider HP, Bröer A, Deitmer JW. Mutation of asparagine 76 in the center of glutamine transporter SNAT3 modulates substrate-induced conductances and Na+ binding. J Biol Chem. 2009;284:25823–31. doi: 10.1074/jbc.M109.031013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Kanamori K, Ross BD. Suppression of glial glutamine release to the extracellular fluid studied in vivo by NMR and microdialysis in hyperammonemic rat brain. J Neurochem. 2005;94:74–85. doi: 10.1111/j.1471-4159.2005.03170.x. [DOI] [PubMed] [Google Scholar]
  • 170.Pamiljans V, Krishnaswamy PR, Dumville G, Meister A. Studies on the mechanism of glutamine synthesis; Isolation and properties of the enzyme from sheep brain. Biochemistry. 1962;1:153–8. doi: 10.1021/bi00907a023. [DOI] [PubMed] [Google Scholar]
  • 171.Häussinger D, Schliess F. Pathogenetic mechanisms of hepatic encephalopathy. Gut. 2008;57:1156–65. doi: 10.1136/gut.2007.122176. [DOI] [PubMed] [Google Scholar]
  • 172.Zwingmann C, Liebfritz D. Ammonia toxicity under hyponatremic conditions in astrocytes: De novo synthesis of amino acids for the osmoregulatory response. Neurochem Int. 2005;47:39–50. doi: 10.1016/j.neuint.2005.04.005. [DOI] [PubMed] [Google Scholar]
  • 173.Zielińska M, Law RO, Albrecht J. Excitotoxic mechanism of cell swelling in rat cortical slices treated acutely with ammonia. Neurochem Int. 2003;43:299–303. doi: 10.1016/S0197-0186(03)00015-9. [DOI] [PubMed] [Google Scholar]
  • 174.Sonnewald U, Therrien G, Butterworth RF. Portacaval anastomosis results in altered neuron-astrocytic metabolic trafficking of amino acids. J Neurochem. 1996;67:1711–7. doi: 10.1046/j.1471-4159.1996.67041711.x. [DOI] [PubMed] [Google Scholar]
  • 175.Kanamori K, Ross BD, Chung JC, Kuo EL. Severity of hyperammonemic encephalopathy correlates with brain ammonia levels and saturation of glutamine synthetase in vivo. J Neurochem. 1996;67:1584–94. doi: 10.1046/j.1471-4159.1996.67041584.x. [DOI] [PubMed] [Google Scholar]
  • 176.Dong G, Benveniste EN. Immune function of astrocytes. Glia. 2001;36:180–90. doi: 10.1002/glia.1107. [DOI] [PubMed] [Google Scholar]
  • 177.Stravitz RT, Kramer AH, Davern T, the Acute Liver Failure Study Group et al. Crit Care Med. 2007;35:2498–508. doi: 10.1097/01.CCM.0000287592.94554.5F. [DOI] [PubMed] [Google Scholar]
  • 178.Kimelberg HK. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia. 2005;50:389–97. doi: 10.1002/glia.20174. [DOI] [PubMed] [Google Scholar]
  • 179.Kimelberg HK, Macvicar BA, Sontheimer H. Anion channels in astrocytes: biophysics, pharmacology, and function. Glia. 2006;54:747–57. doi: 10.1002/glia.20423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Eisenberg D, Gill HS, Pfluegl GMU, Rotstein SH. Structure-function relationships of glutamine synthetases. Biochim Biophys Acta. 2000;1477:122–45. doi: 10.1016/S0167-4838(99)00270-8. [DOI] [PubMed] [Google Scholar]
  • 181.Laake JH, Slyngstad TA, Haug FM, Ottersen OP. Glutamine from glial cells is essential for the maintenance of the nerve terminal pool of glutamate: immunogold evidence from hippocampal slice cultures. J Neurochem. 1995;65:871–81. doi: 10.1046/j.1471-4159.1995.65020871.x. [DOI] [PubMed] [Google Scholar]
  • 182.Zielińska M, Stafiej A, Law RO, Albrecht J. Effects of methionine sulfoximine on the glutamine and glutamate content and cell volume in rat cerebral cortical slices: involvement of mechanisms not related to inhibition of glutamine synthesis. Neurotoxicology. 2004;25:443–9. doi: 10.1016/j.neuro.2003.10.003. [DOI] [PubMed] [Google Scholar]
  • 183.Tews JK, Stone WE. Effects of methionine sulfoximine on levels of free amino acids and related substances in brain. Biochem Pharmacol. 1964;13:543–5. doi: 10.1016/0006-2952(64)90180-7. [DOI] [PubMed] [Google Scholar]
  • 184.Van den Berg CJ, Van den Velden J. The effect of methionine sulphoximine on the incorporation of labelled glucose, acetate, phenylalanine and proline into glutamate and related amino acids in the brains of mice. J Neurochem. 1970;17:985–91. doi: 10.1111/j.1471-4159.1970.tb02251.x. [DOI] [PubMed] [Google Scholar]
  • 185.Gershoff SN, Elvehjem CA. The relative effect of methionine sulfoximine on different animal species. J Nutr. 1951;45:451–8. doi: 10.1093/jn/45.3.451. [DOI] [PubMed] [Google Scholar]
  • 186.Sellinger OZ, Azcurra JM, Ohlsson WG. Methionine sulfoximine seizures. VIII. The dissociation of the convulsant and glutamine synthetase inhibitory effects. J Pharmacol Exp Ther. 1968;164:212–22. [PubMed] [Google Scholar]
  • 187.Folbergrová J. Glycogen and glycogen phosphorylase in the cerebral cortex of mice under the influence of methionine sulphoximine. J Neurochem. 1973;20:547–57. doi: 10.1111/j.1471-4159.1973.tb12154.x. [DOI] [PubMed] [Google Scholar]
  • 188.Schatz RA, Sellinger OZ. Effect of methionine and methionine sulfoximine on rat brain S-adenosyl methionine levels. J Neurochem. 1975;24:63–6. doi: 10.1111/j.1471-4159.1975.tb07628.x. [DOI] [PubMed] [Google Scholar]
  • 189.Sellinger OZ, Schatz RA, Porta R, Wilens TE. Brain methylation and epileptogenesis: the case of methionine sulfoximine. Ann Neurol. 1984;16:S115–20. doi: 10.1002/ana.410160717. [DOI] [PubMed] [Google Scholar]
  • 190.Rowe WB, Meister A. Identification of L-methionine-S-sulfoximine as the convulsant isomer of methionine sulfoximine. Proc Natl Acad Sci USA. 1970;66:500–6. doi: 10.1073/pnas.66.2.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Griffith OW, Meister A. Differential inhibition of glutamine and γ-glutamylcysteine synthetases by α-alkyl analogs of methionine sulfoximine that induce convulsions. J Biol Chem. 1978;253:2333–8. [PubMed] [Google Scholar]
  • 192.Rao SLN, Meister A. In vivo formation of methionine sulfoximine phosphate, a protein-bound metabolite of methionine sulfoximine. Biochemistry. 1972;11:1123–7. doi: 10.1021/bi00757a001. [DOI] [PubMed] [Google Scholar]
  • 193.Cooper AJL, Stephani RA, Meister A. Enzymatic reactions of methionine sulfoximine. Conversion to the corresponding α-imino and α-keto acids, and to α-ketobutyrate and methane sulfinimide. J Biol Chem. 1976;251:6674–82. [PubMed] [Google Scholar]
  • 194.Newell GW, Erickson TC, Gilson WE, Gershoff SN, Elvehjem CA. Studies on human subjects receiving highly ageinized food materials. J Lab Clin Med. 1949;34:239–45. [PubMed] [Google Scholar]
  • 195.Pollack GH. Species specificity of agene toxicity. J Appl Physiol. 1949;1:802–6. doi: 10.1152/jappl.1949.1.11.802. [DOI] [PubMed] [Google Scholar]
  • 196.Blin M, Crusio WE, Hévor T, Cloix J-F. Chronic inhibition of glutamine synthetase is not associated with impairment of learning and memory in mice. Brain Res Bull. 2002;57:11–5. doi: 10.1016/S0361-9230(01)00631-1. [DOI] [PubMed] [Google Scholar]
  • 197.Eid T, Ghosh A, Wang Y, et al. Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain. 2008;131:2061–70. doi: 10.1093/brain/awn133. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES