Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Jul;86(14):5385–5389. doi: 10.1073/pnas.86.14.5385

Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching.

S R Chary 1, R K Jain 1
PMCID: PMC297627  PMID: 2748592

Abstract

Macromolecular transport through the interstitial space of a tissue occurs by convection and diffusion. The convective component of transport results from interstitial fluid flow. There have been no direct measurements of the magnitude or direction of interstitial fluid flow in tissues to date. Using fluorescence recovery after photobleaching, we have measured interstitial fluid velocities and the diffusion coefficient of bovine serum albumin in normal and neoplastic tissues grown in a thin, transparent window in the ear of a rabbit. A well-defined laser beam was focused on a region within the interstitium of the fluorescence-bathed tissue. A short pulse of laser irradiation extinguished the fluorescence emanating from this selected region. The recovery of fluorescence due to diffusion and convection within the medium was monitored and analyzed to yield values of the diffusion coefficient and the fluid velocity. The average fluid velocity was about 0.6 microns/s, and albumin diffusion coefficients were 5.8 +/- 1.3 x 10(-7) cm2/s and 6.3 +/- 1.9 x 10(-7) cm2/s in normal and neoplastic tissues, respectively. The interstitial fluid flow, in general, was directed into postcapillary venules. The results obtained in this study should provide the impetus for further investigation into the diffusion and convection in various tissues under normal and pathological conditions.

Full text

PDF
5385

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aukland K., Nicolaysen G. Interstitial fluid volume: local regulatory mechanisms. Physiol Rev. 1981 Jul;61(3):556–643. doi: 10.1152/physrev.1981.61.3.556. [DOI] [PubMed] [Google Scholar]
  2. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Butler T. P., Grantham F. H., Gullino P. M. Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res. 1975 Nov;35(11 Pt 1):3084–3088. [PubMed] [Google Scholar]
  4. Casley-Smith J. R. Channels through the interstitial tissue. Bibl Anat. 1977;(15 Pt 1):206–209. [PubMed] [Google Scholar]
  5. Davoust J., Devaux P. F., Leger L. Fringe pattern photobleaching, a new method for the measurement of transport coefficients of biological macromolecules. EMBO J. 1982;1(10):1233–1238. doi: 10.1002/j.1460-2075.1982.tb00018.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dudar T. E., Jain R. K. Microcirculatory flow changes during tissue growth. Microvasc Res. 1983 Jan;25(1):1–21. doi: 10.1016/0026-2862(83)90040-7. [DOI] [PubMed] [Google Scholar]
  7. Flessner M. F., Dedrick R. L., Schultz J. S. A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Physiol. 1984 Apr;246(4 Pt 2):R597–R607. doi: 10.1152/ajpregu.1984.246.4.R597. [DOI] [PubMed] [Google Scholar]
  8. Fox J. R., Wayland H. Interstitial diffusion of macromolecules in the rat mesentery. Microvasc Res. 1979 Sep;18(2):255–276. doi: 10.1016/0026-2862(79)90033-5. [DOI] [PubMed] [Google Scholar]
  9. Gerlowski L. E., Jain R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc Res. 1986 May;31(3):288–305. doi: 10.1016/0026-2862(86)90018-x. [DOI] [PubMed] [Google Scholar]
  10. Guyton A. C., Scheel K., Murphree D. Interstitial fluid pressure. 3. Its effect on resistance to tissue fluid mobility. Circ Res. 1966 Aug;19(2):412–419. doi: 10.1161/01.res.19.2.412. [DOI] [PubMed] [Google Scholar]
  11. Intaglietta M., Endrich B. A. Experimental and quantitative analysis of microcirculatory water exchange. Acta Physiol Scand Suppl. 1979;463:59–66. [PubMed] [Google Scholar]
  12. Jain R. K. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst. 1989 Apr 19;81(8):570–576. doi: 10.1093/jnci/81.8.570. [DOI] [PubMed] [Google Scholar]
  13. Jain R. K. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 1987;6(4):559–593. doi: 10.1007/BF00047468. [DOI] [PubMed] [Google Scholar]
  14. Jain R. K. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987 Jun 15;47(12):3039–3051. [PubMed] [Google Scholar]
  15. Koppel D. E. Fluorescence redistribution after photobleaching. A new multipoint analysis of membrane translational dynamics. Biophys J. 1979 Nov;28(2):281–291. doi: 10.1016/S0006-3495(79)85176-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakamura Y., Wayland H. Macromolecular transport in the cat mesentery. Microvasc Res. 1975 Jan;9(1):1–21. doi: 10.1016/0026-2862(75)90046-1. [DOI] [PubMed] [Google Scholar]
  17. Nugent L. J., Jain R. K. Extravascular diffusion in normal and neoplastic tissues. Cancer Res. 1984 Jan;44(1):238–244. [PubMed] [Google Scholar]
  18. Nugent L. J., Jain R. K. Monitoring transport in the rabbit ear chamber. Microvasc Res. 1982 Sep;24(2):204–209. doi: 10.1016/0026-2862(82)90057-7. [DOI] [PubMed] [Google Scholar]
  19. Nugent L. J., Jain R. K. Plasma pharmacokinetics and interstitial diffusion of macromolecules in a capillary bed. Am J Physiol. 1984 Jan;246(1 Pt 2):H129–H137. doi: 10.1152/ajpheart.1984.246.1.H129. [DOI] [PubMed] [Google Scholar]
  20. Priebe L. A., Welch A. J. A dimensionless model for the calculation of temperature increase in biologic tissues exposed to nonionizing radiation. IEEE Trans Biomed Eng. 1979 Apr;26(4):244–250. doi: 10.1109/tbme.1979.326509. [DOI] [PubMed] [Google Scholar]
  21. Renkin E. M. Some consequences of capillary permeability to macromolecules: Starling's hypothesis reconsidered. Am J Physiol. 1986 May;250(5 Pt 2):H706–H710. doi: 10.1152/ajpheart.1986.250.5.H706. [DOI] [PubMed] [Google Scholar]
  22. Salathe E. P., An K. N. A mathematical analysis of fluid movement across capillary walls. Microvasc Res. 1976 Jan;11(1):1–23. doi: 10.1016/0026-2862(76)90072-8. [DOI] [PubMed] [Google Scholar]
  23. Simon J. R., Gough A., Urbanik E., Wang F., Lanni F., Ware B. R., Taylor D. L. Analysis of rhodamine and fluorescein-labeled F-actin diffusion in vitro by fluorescence photobleaching recovery. Biophys J. 1988 Nov;54(5):801–815. doi: 10.1016/S0006-3495(88)83018-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith B. A., McConnell H. M. Determination of molecular motion in membranes using periodic pattern photobleaching. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2759–2763. doi: 10.1073/pnas.75.6.2759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Swabb E. A., Wei J., Gullino P. M. Diffusion and convection in normal and neoplastic tissues. Cancer Res. 1974 Oct;34(10):2814–2822. [PubMed] [Google Scholar]
  26. Wojcieszyn J. W., Schlegel R. A., Wu E. S., Jacobson K. A. Diffusion of injected macromolecules within the cytoplasm of living cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4407–4410. doi: 10.1073/pnas.78.7.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES