Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 11;65(Pt 8):m902. doi: 10.1107/S1600536809026105

Poly[diaqua­(μ3-8-oxidoquinoline-5-sulfonato-κ4 N,O 8:O 5:O 8)nickel(II)]

Ying Wang a, Li Wang a, Jianing Xu a,*, Guangshan Zhu a,
PMCID: PMC2977084  PMID: 21583362

Abstract

In title compound, [Ni(C9H5NO4S)(H2O)2]n, the NiII atom is coordinated by one N atom and two bridging O atoms from two 8-oxidoquinoline-5-sulfonate ligands, one sulfonate O atom from a third ligand, and two water mol­ecules in a distorted octa­hedral geometry. The two NiII atoms are linked to each other through the bridging O atoms, forming a dimer. Adjacent dimers are connected through the coordination of the sulfonate O atom into a two-dimensional coordination network parallel to (010). Hydrogen bonds between the coordinated water mol­ecules and the uncoordinated O atoms of the sulfonate groups result in the construction of a three-dimensional supra­molecular structure.

Related literature

For related structures, see: Ammor et al. (1992); Petit et al. (1993a ,b ); Rao et al. (2003); Wu et al. (2008); Xie et al. (1992).graphic file with name e-65-0m902-scheme1.jpg

Experimental

Crystal data

  • [Ni(C9H5NO4S)(H2O)2]

  • M r = 317.94

  • Orthorhombic, Inline graphic

  • a = 9.2067 (8) Å

  • b = 15.0504 (13) Å

  • c = 16.1599 (14) Å

  • V = 2239.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.94 mm−1

  • T = 293 K

  • 0.28 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.601, T max = 0.701

  • 11973 measured reflections

  • 2198 independent reflections

  • 1874 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.079

  • S = 1.02

  • 2198 reflections

  • 171 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809026105/hy2203sup1.cif

e-65-0m902-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026105/hy2203Isup2.hkl

e-65-0m902-Isup2.hkl (110.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—O1i 2.0153 (17)
Ni1—O6W 2.0285 (19)
Ni1—O1 2.0443 (16)
Ni1—N1 2.052 (2)
Ni1—O5W 2.0936 (19)
Ni1—O2ii 2.1437 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5W—H5WA⋯O3iii 0.82 2.00 2.812 (2) 171
O5W—H5WB⋯O4iv 0.80 (2) 2.07 (2) 2.866 (3) 170 (2)
O6W—H6WA⋯O3iv 0.82 1.93 2.687 (2) 153
O6W—H6WB⋯O4v 0.78 (2) 2.04 (2) 2.787 (3) 159 (3)

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20571030).

supplementary crystallographic information

Comment

The metal complexes with organic ligands containing sulfonate group still remain largely unexplored. We have been investigating the formation of novel transition metal coordination polymers employing hydrothermal methods. During the course of the investigation employing 8-hydroxylquinoline-5-sulfonic acids (H2QS) as organic ligand, which has received a little attention (Ammor et al., 1992; Petit et al., 1993a,b; Rao et al., 2003; Wu et al., 2008; Xie et al., 1992), and nickel(II) as metal center, we isolated a new two-dimensional coordination polymer.

As shown in Fig. 1, the asymmetric unit of the title compound contains one NiII atom, one QS ligand, and two water molecules. The NiII atom adopts a distorted octahedral coordination geometry, defined by one N atom and two bridging olate O atoms from two QS ligands, one sulfonate O atom from a third ligand, and two water molecules (Table 1). Two crystallographically equivalent Ni atoms [Ni1 and Ni1i, symmetry code: (i) -x, -y, 1 - z] link to each other through two bridging atoms O1 and O1i, forming an edge-sharing dimer. These dimers are connected by the sulfonate groups of the QS ligands into an infinite two-dimensional coordination network with a (4,4) topology along the [0 1 0] direction, as shown in Fig. 2. These networks are further connected by hydrogen bonds between the coordinated water molecules and the uncoordinated O atoms of the sulfonate groups into a three-dimensional supramolecular structure (Fig. 3 and Table 2).

Experimental

A mixture of Ni(NO3)2.4H2O (0.250 g, 1 mmol) and H2QS (0.024 g, 0.1 mmol) was dissolved in 6 ml H2O with stirring about half an hour and pH = 6. The mixture was transferred to a 15 ml Teflon-lined stainless-steel hydrothermal autoclave and heated at 413 K for two weeks under autogenous pressure. The green block crystals were filtered off, washed with ethanol and dried at room temperature.

Refinement

H atoms on C atoms are positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso = 1.2Ueq(C). H atoms of water molecules are located in a difference Fourier map. Two H atoms (H5WA and H6WA) were refined as riding atoms, with O—H = 0.82 Å and Uiso = 1.5Ueq(O), and the other two (H5WB and H6WB) were refined isotropically.

Figures

Fig. 1.

Fig. 1.

Coordination environment of the Ni atom in the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x,-y,-z + 1; (ii) x + 1/2, y, -z + 1/2.]

Fig. 2.

Fig. 2.

The two-dimensional coordination network of the title compound with a (4,4) topology, viewed along the [0 1 0] direction.

Fig. 3.

Fig. 3.

The three-dimensional supramolecular structure of the title compound, connected by hydrogen bonds between the coordinated water molecules and the uncoordinated sulfonate O atoms.

Crystal data

[Ni(C9H5NO4S)(H2O)2] F(000) = 1296
Mr = 317.94 Dx = 1.886 Mg m3Dm = 1.886 Mg m3Dm measured by not measured
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2198 reflections
a = 9.2067 (8) Å θ = 2.5–28.1°
b = 15.0504 (13) Å µ = 1.94 mm1
c = 16.1599 (14) Å T = 293 K
V = 2239.2 (3) Å3 Block, green
Z = 8 0.28 × 0.22 × 0.18 mm

Data collection

Bruker SMART APEX CCD diffractometer 2198 independent reflections
Radiation source: fine-focus sealed tube 1874 reflections with I > 2σ(I)
graphite Rint = 0.037
φ and ω scans θmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→11
Tmin = 0.601, Tmax = 0.701 k = −18→17
11973 measured reflections l = −18→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0484P)2] where P = (Fo2 + 2Fc2)/3
2198 reflections (Δ/σ)max = 0.001
171 parameters Δρmax = 0.64 e Å3
4 restraints Δρmin = −0.27 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.10943 (3) 0.058524 (19) 0.446648 (17) 0.02363 (12)
O5W −0.0374 (2) 0.16474 (12) 0.44545 (10) 0.0326 (4)
H5WA −0.0848 0.1645 0.4884 0.049*
O1 0.04736 (19) 0.03393 (11) 0.56593 (9) 0.0264 (4)
N1 0.0998 (2) 0.05336 (12) 0.31986 (12) 0.0250 (5)
C8 −0.0750 (3) −0.05668 (14) 0.35675 (14) 0.0232 (5)
C9 0.0015 (3) −0.00829 (15) 0.29298 (13) 0.0231 (5)
C4 −0.0248 (3) −0.02414 (16) 0.20803 (13) 0.0251 (5)
C2 0.1498 (3) 0.09088 (18) 0.17944 (15) 0.0338 (6)
H2A 0.2007 0.1263 0.1423 0.041*
C3 0.0542 (3) 0.02903 (17) 0.15126 (14) 0.0300 (6)
H3B 0.0406 0.0216 0.0947 0.036*
C5 −0.1275 (3) −0.09119 (16) 0.18792 (14) 0.0256 (5)
C1 0.1711 (3) 0.10083 (16) 0.26430 (15) 0.0311 (6)
H1B 0.2383 0.1426 0.2826 0.037*
C6 −0.1969 (3) −0.13796 (16) 0.24900 (15) 0.0310 (6)
H6A −0.2631 −0.1819 0.2342 0.037*
C7 −0.1711 (3) −0.12159 (15) 0.33312 (15) 0.0314 (6)
H7A −0.2193 −0.1549 0.3731 0.038*
O6W 0.2752 (2) 0.14637 (13) 0.45841 (13) 0.0415 (5)
H6WA 0.2501 0.1948 0.4401 0.062*
H5WB −0.011 (3) 0.2155 (12) 0.4428 (14) 0.029 (7)*
H6WB 0.347 (3) 0.134 (2) 0.4814 (19) 0.060 (11)*
S1 −0.16782 (7) −0.11580 (4) 0.08365 (4) 0.02460 (16)
O2 −0.21464 (19) −0.03403 (11) 0.04239 (9) 0.0293 (4)
O4 −0.03579 (19) −0.15043 (12) 0.04607 (10) 0.0352 (4)
O3 −0.28431 (19) −0.18166 (11) 0.08585 (10) 0.0313 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0259 (2) 0.0217 (2) 0.02325 (19) −0.00303 (12) −0.00136 (12) 0.00040 (11)
O5W 0.0340 (11) 0.0262 (10) 0.0375 (10) 0.0004 (8) 0.0078 (8) 0.0026 (8)
O1 0.0293 (10) 0.0275 (9) 0.0225 (8) −0.0058 (8) 0.0005 (7) −0.0008 (7)
N1 0.0235 (11) 0.0235 (11) 0.0279 (11) −0.0013 (8) −0.0027 (8) −0.0001 (8)
C8 0.0250 (13) 0.0217 (12) 0.0230 (12) 0.0009 (9) 0.0008 (9) 0.0002 (9)
C9 0.0191 (11) 0.0232 (12) 0.0270 (12) 0.0017 (9) −0.0022 (9) −0.0010 (9)
C4 0.0246 (13) 0.0263 (12) 0.0245 (12) 0.0038 (10) −0.0011 (10) −0.0017 (9)
C2 0.0348 (15) 0.0385 (15) 0.0282 (13) −0.0071 (12) 0.0025 (11) 0.0077 (12)
C3 0.0305 (14) 0.0348 (14) 0.0246 (12) −0.0007 (11) −0.0002 (10) 0.0009 (10)
C5 0.0259 (13) 0.0259 (12) 0.0250 (12) 0.0028 (10) −0.0012 (10) −0.0020 (10)
C1 0.0317 (14) 0.0299 (14) 0.0317 (13) −0.0106 (11) −0.0051 (11) 0.0019 (10)
C6 0.0338 (14) 0.0265 (13) 0.0327 (13) −0.0065 (11) −0.0032 (11) −0.0038 (11)
C7 0.0358 (15) 0.0308 (14) 0.0276 (13) −0.0072 (11) 0.0013 (11) 0.0017 (10)
O6W 0.0318 (11) 0.0256 (10) 0.0670 (13) −0.0053 (8) −0.0201 (10) 0.0100 (9)
S1 0.0260 (3) 0.0232 (3) 0.0246 (3) 0.0021 (2) −0.0014 (2) −0.0041 (2)
O2 0.0330 (10) 0.0263 (9) 0.0284 (9) 0.0054 (8) −0.0022 (7) 0.0002 (7)
O4 0.0320 (10) 0.0358 (11) 0.0377 (10) 0.0081 (8) 0.0043 (8) −0.0047 (8)
O3 0.0353 (10) 0.0276 (9) 0.0310 (9) −0.0038 (8) −0.0036 (7) −0.0052 (7)

Geometric parameters (Å, °)

Ni1—O1i 2.0153 (17) C4—C5 1.421 (3)
Ni1—O6W 2.0285 (19) C2—C3 1.360 (4)
Ni1—O1 2.0443 (16) C2—C1 1.393 (3)
Ni1—N1 2.052 (2) C2—H2A 0.9300
Ni1—O5W 2.0936 (19) C3—H3B 0.9300
Ni1—O2ii 2.1437 (17) C5—C6 1.371 (3)
O5W—H5WA 0.8200 C5—S1 1.765 (2)
O5W—H5WB 0.804 (17) C1—H1B 0.9300
O1—C8i 1.320 (3) C6—C7 1.402 (3)
N1—C1 1.322 (3) C6—H6A 0.9300
N1—C9 1.367 (3) C7—H7A 0.9300
C8—O1i 1.320 (3) O6W—H6WA 0.8200
C8—C7 1.372 (3) O6W—H6WB 0.784 (17)
C8—C9 1.445 (3) S1—O4 1.4553 (18)
C9—C4 1.414 (3) S1—O3 1.4608 (17)
C4—C3 1.418 (3) S1—O2 1.4645 (17)
O1i—Ni1—O6W 176.93 (8) C9—C4—C5 117.1 (2)
O1i—Ni1—O1 76.69 (7) C3—C4—C5 126.5 (2)
O6W—Ni1—O1 103.89 (8) C3—C2—C1 119.6 (2)
O1i—Ni1—N1 80.92 (7) C3—C2—H2A 120.2
O6W—Ni1—N1 98.67 (8) C1—C2—H2A 120.2
O1—Ni1—N1 157.28 (7) C2—C3—C4 120.1 (2)
O1i—Ni1—O5W 93.64 (8) C2—C3—H3B 119.9
O6W—Ni1—O5W 89.40 (8) C4—C3—H3B 119.9
O1—Ni1—O5W 88.06 (7) C6—C5—C4 120.7 (2)
N1—Ni1—O5W 89.54 (7) C6—C5—S1 118.81 (19)
O1i—Ni1—O2 59.09 (4) C4—C5—S1 120.49 (18)
O6W—Ni1—O2 120.98 (6) N1—C1—C2 122.7 (2)
O1—Ni1—O2 133.91 (5) N1—C1—H1B 118.6
N1—Ni1—O2ii 95.19 (7) C2—C1—H1B 118.6
O5W—Ni1—O2ii 170.00 (7) C5—C6—C7 121.9 (2)
Ni1—O5W—H5WA 109.5 C5—C6—H6A 119.0
Ni1—O5W—H5WB 122 (2) C7—C6—H6A 119.0
H5WA—O5W—H5WB 102.2 C8—C7—C6 120.3 (2)
C8i—O1—Ni1i 114.35 (14) C8—C7—H7A 119.9
C8i—O1—Ni1 142.34 (15) C6—C7—H7A 119.9
Ni1i—O1—Ni1 103.31 (7) Ni1—O6W—H6WA 109.5
C1—N1—C9 118.7 (2) Ni1—O6W—H6WB 122 (2)
C1—N1—Ni1 129.50 (16) H6WA—O6W—H6WB 128.7
C9—N1—Ni1 111.81 (15) O4—S1—O3 112.36 (11)
O1i—C8—C7 124.9 (2) O4—S1—O2 110.91 (10)
O1i—C8—C9 116.8 (2) O3—S1—O2 111.42 (10)
C7—C8—C9 118.3 (2) O4—S1—C5 107.33 (11)
N1—C9—C4 122.4 (2) O3—S1—C5 105.87 (10)
N1—C9—C8 115.98 (19) O2—S1—C5 108.68 (10)
C4—C9—C8 121.6 (2) S1—O2—Ni1iii 136.95 (11)
C9—C4—C3 116.4 (2)

Symmetry codes: (i) −x, −y, −z+1; (ii) x+1/2, y, −z+1/2; (iii) x−1/2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5W—H5WA···O3iv 0.82 2.00 2.812 (2) 171
O5W—H5WB···O4v 0.80 (2) 2.07 (2) 2.866 (3) 170 (2)
O6W—H6WA···O3v 0.82 1.93 2.687 (2) 153
O6W—H6WB···O4vi 0.78 (2) 2.04 (2) 2.787 (3) 159 (3)

Symmetry codes: (iv) −x−1/2, −y, z+1/2; (v) −x, y+1/2, −z+1/2; (vi) −x+1/2, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2203).

References

  1. Ammor, S., Coquerel, G., Perez, G. & Robert, F. (1992). Eur. J. Solid State Inorg. Chem.29, 131–139.
  2. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Petit, S., Ammor, S., Coquerel, G., Mayer, G., Perez, G. & Dance, J.-M. (1993a). Eur. J. Solid State Inorg. Chem.39, 497–507.
  6. Petit, S., Coquerel, G., Perez, G., Louer, D. & Louer, M. (1993b). New J. Chem.17, 187–192.
  7. Rao, H.-Y., Tao, J. & Ng, S. W. (2003). Acta Cryst. E59, m859–m860.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wu, H., Dong, X. W., Liu, H.-Y., Ma, J.-F., Li, S.-L., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2008). Dalton Trans. pp. 5331–5341. [DOI] [PubMed]
  10. Xie, Z. X., Liu, W., Liu, H. F. & Zheng, L. S. (1992). Chin. J. Struct. Chem.11, 139–142.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809026105/hy2203sup1.cif

e-65-0m902-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026105/hy2203Isup2.hkl

e-65-0m902-Isup2.hkl (110.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES