Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 29;65(Pt 8):o2035. doi: 10.1107/S160053680902947X

3-[(5-Methyl­furan-2-yl)methyl­ene]-1,5-dioxaspiro­[5.5]undecane-2,4-dione

Wu-Lan Zeng a, Hua-Xiang Zhang a, Fang-Fang Jian a,*
PMCID: PMC2977103  PMID: 21583701

Abstract

There are two crystallographically independent mol­ecules in the asymmetric unit of the title compound, C15H16O5. In each, the 1,3-dioxane ring is in an envelope conformation with the C atom common to the cyclo­hexane ring forming the flap. The dihedral angles between the five essentially planar [maximum deviations from the least-squares planes of 0.049 (3) and 0.042 (3) Å] atoms of the 1,3-dioxane ring and the furan ring in the two mol­ecules are 7.15 (1) and 6.80 (1)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background to the applications of spiro compounds, see: Yaozhong et al. (1998); Lian et al. (2008); Wei et al. (2008). For the crystal structure of 3-(furan-2-ylmethyl­ene)-1,5-dioxa­spiro­[5.5]undecane-2,4-dione, see: Zeng & Jian (2009).graphic file with name e-65-o2035-scheme1.jpg

Experimental

Crystal data

  • C15H16O5

  • M r = 276.28

  • Monoclinic, Inline graphic

  • a = 19.314 (4) Å

  • b = 6.8289 (14) Å

  • c = 20.468 (4) Å

  • β = 97.04 (3)°

  • V = 2679.2 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.978, T max = 0.985

  • 21978 measured reflections

  • 6028 independent reflections

  • 3716 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.198

  • S = 1.02

  • 6028 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680902947X/lh2861sup1.cif

e-65-o2035-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902947X/lh2861Isup2.hkl

e-65-o2035-Isup2.hkl (295.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4A—H4AA⋯O4Bi 0.93 2.59 3.408 (3) 147
C1B—H1BA⋯O4Aii 0.93 2.50 3.376 (3) 157
C12B—H12B⋯O4Bi 0.97 2.53 3.420 (3) 152
C13A—H13A⋯O4Aii 0.97 2.54 3.405 (3) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Spiro compounds are widely used in medicine, catalysis and optical material (Lian et al., 2008; Yaozhong et al., 1998; Wei et al., 2008) owing to their interesting conformational features. We report here the synthesis and structure of the title compound, (I), as part of our ongoing studies on new spiro compounds with potentially higher bioactivity and have recently determined the crystal structure of 3-(furan-2-ylmethylene)-1,5-dioxaspiro[5.5]undecane-2,4-dione, (Zeng & Jian, 2009).

The asymmetric unit of (I) is shown in Fig. 1. In both independent molecules, the 1,3-dioxane ring is in an envelope conformation with atoms C9A and C9B forming the flap in each. The mean planes of the other five essentially planar atoms (O5A/O6A/C6A—C8A and O5B/O6B/C6B—C8B) form dihedral angles of 7.15 (1)° and 6.80 (1)° with the furan ring (O2A/C1A-C4A and O2B/C1B-C4B). The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

Experimental

A mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in conc. sulfuric acid (0.25 ml) was stirred with water at 303K, After dissolving, cyclohexanone (5.88 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 4 h. The mixture was cooled and filtered, and then an ethanol solution of 5-methylfuran-2-carbaldehyde (6.60 g,0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by evaporation of an acetone-petroleum aether (2:1 v/v) solution of (I) at room temperature over a period of one week.

Refinement

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.

Crystal data

C15H16O5 F(000) = 1168
Mr = 276.28 Dx = 1.370 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3716 reflections
a = 19.314 (4) Å θ = 3.1–27.5°
b = 6.8289 (14) Å µ = 0.10 mm1
c = 20.468 (4) Å T = 293 K
β = 97.04 (3)° Block, yellow
V = 2679.2 (9) Å3 0.22 × 0.18 × 0.15 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 6028 independent reflections
Radiation source: fine-focus sealed tube 3716 reflections with I > 2σ(I)
graphite Rint = 0.049
φ and ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −25→24
Tmin = 0.978, Tmax = 0.985 k = −8→8
21978 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.119P)2] where P = (Fo2 + 2Fc2)/3
6028 reflections (Δ/σ)max = 0.001
363 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O2A 0.77282 (7) 0.9079 (2) 0.18291 (7) 0.0240 (4)
O3A 0.85666 (7) 1.0679 (3) 0.38985 (7) 0.0302 (4)
O4A 1.01152 (7) 1.0476 (3) 0.22791 (7) 0.0298 (4)
O5A 0.97036 (7) 1.1039 (2) 0.41380 (7) 0.0266 (4)
O6A 1.04784 (7) 1.0940 (2) 0.33323 (7) 0.0250 (4)
C1A 0.74943 (10) 0.9542 (4) 0.28658 (10) 0.0246 (5)
H1AA 0.7543 0.9805 0.3315 0.030*
C2A 0.80226 (10) 0.9507 (3) 0.24675 (9) 0.0226 (5)
C3A 0.70337 (10) 0.8848 (3) 0.18383 (10) 0.0241 (5)
C4A 0.68697 (10) 0.9107 (4) 0.24655 (11) 0.0264 (5)
H4AA 0.6428 0.9012 0.2600 0.032*
C5A 0.87528 (10) 0.9763 (3) 0.25215 (9) 0.0223 (5)
H5AA 0.8931 0.9559 0.2125 0.027*
C6A 0.91304 (10) 1.0628 (3) 0.37011 (10) 0.0234 (5)
C7A 0.92562 (10) 1.0240 (3) 0.30207 (9) 0.0227 (5)
C8A 0.99672 (10) 1.0523 (4) 0.28365 (10) 0.0244 (5)
C9A 1.03783 (10) 1.0380 (3) 0.39939 (9) 0.0225 (5)
C10A 1.16592 (10) 1.0837 (4) 0.43581 (10) 0.0294 (5)
H10A 1.1762 1.1199 0.3922 0.035*
H10B 1.1991 1.1501 0.4677 0.035*
C11A 1.17412 (10) 0.8647 (4) 0.44459 (10) 0.0295 (5)
H11A 1.1698 0.8308 0.4899 0.035*
H11B 1.2203 0.8263 0.4355 0.035*
C12A 1.11918 (10) 0.7519 (4) 0.39880 (10) 0.0265 (5)
H12C 1.1237 0.6130 0.4082 0.032*
H12D 1.1273 0.7724 0.3534 0.032*
C13A 1.04505 (10) 0.8192 (4) 0.40769 (10) 0.0252 (5)
H13A 1.0117 0.7541 0.3755 0.030*
H13B 1.0346 0.7824 0.4512 0.030*
C14A 1.09154 (10) 1.1511 (4) 0.44459 (10) 0.0275 (5)
H14C 1.0834 1.1312 0.4899 0.033*
H14D 1.0868 1.2899 0.4349 0.033*
C15A 0.66067 (11) 0.8365 (4) 0.12100 (11) 0.0323 (5)
H15A 0.6659 0.9375 0.0893 0.049*
H15B 0.6125 0.8269 0.1280 0.049*
H15C 0.6758 0.7137 0.1049 0.049*
O2B 0.72619 (7) 0.4699 (2) 0.32748 (7) 0.0260 (4)
O3B 0.65167 (7) 0.3142 (3) 0.11772 (7) 0.0311 (4)
O4B 0.48850 (7) 0.3305 (3) 0.27231 (7) 0.0312 (4)
O5B 0.53852 (7) 0.2773 (3) 0.08899 (7) 0.0289 (4)
O6B 0.45715 (7) 0.2830 (3) 0.16647 (7) 0.0269 (4)
C1B 0.81544 (10) 0.4690 (4) 0.26779 (11) 0.0289 (5)
H1BA 0.8604 0.4789 0.2562 0.035*
C2B 0.75465 (10) 0.4255 (4) 0.22541 (11) 0.0262 (5)
H2BA 0.7519 0.3999 0.1805 0.031*
C3B 0.79632 (10) 0.4941 (4) 0.32922 (11) 0.0269 (5)
C4B 0.69981 (10) 0.4275 (3) 0.26259 (10) 0.0242 (5)
C5B 0.62670 (10) 0.4016 (3) 0.25433 (10) 0.0229 (5)
H5BA 0.6071 0.4197 0.2932 0.027*
C6B 0.50626 (10) 0.3260 (4) 0.21756 (10) 0.0255 (5)
C7B 0.57830 (10) 0.3558 (3) 0.20207 (10) 0.0238 (5)
C8B 0.59395 (10) 0.3186 (4) 0.13503 (10) 0.0249 (5)
C9B 0.46957 (10) 0.3378 (4) 0.10066 (10) 0.0251 (5)
C10B 0.34343 (11) 0.2776 (4) 0.06026 (11) 0.0326 (6)
H10C 0.3122 0.2052 0.0282 0.039*
H10D 0.3319 0.2447 0.1037 0.039*
C11B 0.41892 (11) 0.2164 (4) 0.05488 (11) 0.0309 (5)
H11C 0.4249 0.0789 0.0661 0.037*
H11D 0.4288 0.2335 0.0099 0.037*
C12B 0.45988 (10) 0.5554 (4) 0.09071 (10) 0.0263 (5)
H12A 0.4725 0.5916 0.0479 0.032*
H12B 0.4905 0.6249 0.1240 0.032*
C13B 0.38411 (10) 0.6153 (4) 0.09512 (10) 0.0285 (5)
H13C 0.3738 0.5974 0.1399 0.034*
H13D 0.3783 0.7530 0.0842 0.034*
C14B 0.33275 (11) 0.4947 (4) 0.04849 (10) 0.0331 (6)
H14A 0.2854 0.5296 0.0550 0.040*
H14B 0.3390 0.5252 0.0033 0.040*
C15B 0.83547 (11) 0.5452 (4) 0.39357 (12) 0.0354 (6)
H15D 0.8248 0.4525 0.4262 0.053*
H15E 0.8225 0.6742 0.4061 0.053*
H15F 0.8846 0.5421 0.3902 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2A 0.0205 (6) 0.0310 (10) 0.0199 (7) −0.0014 (6) −0.0002 (6) −0.0009 (6)
O3A 0.0241 (7) 0.0446 (12) 0.0225 (7) 0.0018 (7) 0.0052 (6) −0.0025 (7)
O4A 0.0222 (7) 0.0473 (12) 0.0202 (7) −0.0007 (7) 0.0042 (6) 0.0054 (7)
O5A 0.0221 (7) 0.0372 (11) 0.0205 (7) 0.0017 (6) 0.0022 (6) −0.0029 (6)
O6A 0.0209 (6) 0.0344 (10) 0.0191 (7) −0.0023 (6) 0.0007 (6) 0.0042 (6)
C1A 0.0231 (9) 0.0292 (14) 0.0216 (10) 0.0022 (9) 0.0028 (8) −0.0001 (8)
C2A 0.0232 (9) 0.0244 (13) 0.0195 (9) 0.0016 (8) −0.0001 (8) 0.0003 (8)
C3A 0.0216 (9) 0.0237 (13) 0.0270 (10) 0.0008 (8) 0.0020 (9) −0.0017 (8)
C4A 0.0215 (9) 0.0277 (14) 0.0304 (11) 0.0005 (9) 0.0039 (9) 0.0004 (9)
C5A 0.0250 (9) 0.0241 (13) 0.0178 (9) 0.0024 (8) 0.0030 (8) 0.0016 (8)
C6A 0.0215 (9) 0.0287 (14) 0.0195 (9) 0.0008 (8) 0.0003 (8) −0.0006 (8)
C7A 0.0201 (9) 0.0290 (14) 0.0188 (9) 0.0032 (8) 0.0019 (8) 0.0027 (8)
C8A 0.0223 (9) 0.0298 (14) 0.0203 (10) −0.0012 (9) −0.0002 (8) 0.0053 (8)
C9A 0.0202 (9) 0.0284 (13) 0.0190 (9) 0.0002 (8) 0.0032 (8) 0.0018 (8)
C10A 0.0243 (10) 0.0415 (16) 0.0211 (10) −0.0078 (9) −0.0018 (9) 0.0002 (9)
C11A 0.0231 (9) 0.0432 (16) 0.0220 (10) 0.0022 (9) 0.0018 (9) 0.0016 (9)
C12A 0.0279 (10) 0.0283 (14) 0.0231 (10) 0.0012 (9) 0.0018 (9) 0.0022 (9)
C13A 0.0242 (9) 0.0326 (14) 0.0185 (9) −0.0029 (9) 0.0019 (8) 0.0020 (8)
C14A 0.0258 (10) 0.0317 (15) 0.0242 (10) −0.0063 (9) −0.0002 (9) −0.0022 (9)
C15A 0.0273 (10) 0.0378 (16) 0.0300 (11) −0.0017 (10) −0.0047 (9) −0.0052 (10)
O2B 0.0213 (7) 0.0312 (10) 0.0250 (7) −0.0001 (6) 0.0008 (6) 0.0000 (6)
O3B 0.0247 (7) 0.0426 (12) 0.0272 (8) 0.0018 (7) 0.0076 (6) −0.0011 (7)
O4B 0.0226 (7) 0.0496 (12) 0.0216 (7) 0.0011 (7) 0.0039 (6) 0.0069 (7)
O5B 0.0224 (7) 0.0407 (11) 0.0238 (7) 0.0009 (7) 0.0031 (6) −0.0016 (7)
O6B 0.0214 (7) 0.0393 (11) 0.0196 (7) −0.0029 (6) 0.0010 (6) 0.0053 (6)
C1B 0.0222 (10) 0.0278 (14) 0.0367 (12) 0.0006 (9) 0.0044 (9) 0.0021 (10)
C2B 0.0236 (9) 0.0275 (14) 0.0278 (11) 0.0017 (9) 0.0046 (9) 0.0022 (9)
C3B 0.0220 (9) 0.0237 (13) 0.0341 (11) 0.0007 (8) 0.0001 (9) 0.0000 (9)
C4B 0.0247 (10) 0.0246 (13) 0.0230 (10) 0.0015 (8) 0.0014 (9) 0.0023 (8)
C5B 0.0237 (9) 0.0246 (13) 0.0212 (9) 0.0041 (8) 0.0062 (8) 0.0026 (8)
C6B 0.0231 (9) 0.0293 (14) 0.0234 (10) 0.0007 (9) 0.0002 (9) 0.0049 (9)
C7B 0.0210 (9) 0.0270 (13) 0.0236 (10) 0.0017 (8) 0.0035 (8) 0.0040 (8)
C8B 0.0220 (9) 0.0282 (14) 0.0245 (10) 0.0011 (8) 0.0031 (9) 0.0019 (9)
C9B 0.0215 (9) 0.0338 (14) 0.0199 (9) −0.0026 (9) 0.0023 (8) 0.0009 (9)
C10B 0.0266 (10) 0.0460 (17) 0.0240 (10) −0.0102 (10) −0.0013 (9) 0.0016 (10)
C11B 0.0289 (10) 0.0371 (16) 0.0257 (10) −0.0044 (10) −0.0002 (9) −0.0022 (10)
C12B 0.0265 (10) 0.0335 (14) 0.0191 (9) −0.0038 (9) 0.0030 (9) 0.0020 (9)
C13B 0.0293 (10) 0.0317 (15) 0.0242 (10) 0.0022 (9) 0.0026 (9) 0.0049 (9)
C14B 0.0256 (10) 0.0517 (18) 0.0209 (10) −0.0012 (10) −0.0013 (9) 0.0070 (10)
C15B 0.0294 (11) 0.0390 (17) 0.0352 (12) −0.0029 (10) −0.0059 (10) −0.0007 (11)

Geometric parameters (Å, °)

O2A—C3A 1.353 (2) O2B—C3B 1.361 (2)
O2A—C2A 1.391 (2) O2B—C4B 1.393 (2)
O3A—C6A 1.207 (2) O3B—C8B 1.211 (2)
O4A—C8A 1.210 (2) O4B—C6B 1.212 (2)
O5A—C6A 1.364 (2) O5B—C8B 1.366 (2)
O5A—C9A 1.443 (2) O5B—C9B 1.442 (2)
O6A—C8A 1.357 (2) O6B—C6B 1.355 (2)
O6A—C9A 1.443 (2) O6B—C9B 1.446 (2)
C1A—C2A 1.382 (3) C1B—C3B 1.364 (3)
C1A—C4A 1.404 (3) C1B—C2B 1.403 (3)
C1A—H1AA 0.9300 C1B—H1BA 0.9300
C2A—C5A 1.412 (3) C2B—C4B 1.378 (3)
C3A—C4A 1.371 (3) C2B—H2BA 0.9300
C3A—C15A 1.478 (3) C3B—C15B 1.478 (3)
C4A—H4AA 0.9300 C4B—C5B 1.412 (3)
C5A—C7A 1.361 (3) C5B—C7B 1.368 (3)
C5A—H5AA 0.9300 C5B—H5BA 0.9300
C6A—C7A 1.467 (3) C6B—C7B 1.478 (3)
C7A—C8A 1.481 (3) C7B—C8B 1.463 (3)
C9A—C13A 1.508 (3) C9B—C12B 1.508 (3)
C9A—C14A 1.514 (3) C9B—C11B 1.516 (3)
C10A—C11A 1.512 (4) C10B—C14B 1.512 (4)
C10A—C14A 1.540 (3) C10B—C11B 1.534 (3)
C10A—H10A 0.9700 C10B—H10C 0.9700
C10A—H10B 0.9700 C10B—H10D 0.9700
C11A—C12A 1.534 (3) C11B—H11C 0.9700
C11A—H11A 0.9700 C11B—H11D 0.9700
C11A—H11B 0.9700 C12B—C13B 1.533 (3)
C12A—C13A 1.536 (3) C12B—H12A 0.9700
C12A—H12C 0.9700 C12B—H12B 0.9700
C12A—H12D 0.9700 C13B—C14B 1.530 (3)
C13A—H13A 0.9700 C13B—H13C 0.9700
C13A—H13B 0.9700 C13B—H13D 0.9700
C14A—H14C 0.9700 C14B—H14A 0.9700
C14A—H14D 0.9700 C14B—H14B 0.9700
C15A—H15A 0.9600 C15B—H15D 0.9600
C15A—H15B 0.9600 C15B—H15E 0.9600
C15A—H15C 0.9600 C15B—H15F 0.9600
C3A—O2A—C2A 107.65 (15) C3B—O2B—C4B 107.26 (16)
C6A—O5A—C9A 118.84 (15) C8B—O5B—C9B 119.22 (16)
C8A—O6A—C9A 118.53 (15) C6B—O6B—C9B 118.84 (15)
C2A—C1A—C4A 107.20 (18) C3B—C1B—C2B 107.22 (18)
C2A—C1A—H1AA 126.4 C3B—C1B—H1BA 126.4
C4A—C1A—H1AA 126.4 C2B—C1B—H1BA 126.4
C1A—C2A—O2A 108.14 (16) C4B—C2B—C1B 107.33 (19)
C1A—C2A—C5A 138.96 (19) C4B—C2B—H2BA 126.3
O2A—C2A—C5A 112.90 (16) C1B—C2B—H2BA 126.3
O2A—C3A—C4A 109.96 (18) O2B—C3B—C1B 109.97 (19)
O2A—C3A—C15A 117.54 (17) O2B—C3B—C15B 116.81 (18)
C4A—C3A—C15A 132.49 (18) C1B—C3B—C15B 133.19 (19)
C3A—C4A—C1A 107.04 (18) C2B—C4B—O2B 108.21 (17)
C3A—C4A—H4AA 126.5 C2B—C4B—C5B 139.2 (2)
C1A—C4A—H4AA 126.5 O2B—C4B—C5B 112.55 (17)
C7A—C5A—C2A 134.69 (18) C7B—C5B—C4B 134.40 (18)
C7A—C5A—H5AA 112.7 C7B—C5B—H5BA 112.8
C2A—C5A—H5AA 112.7 C4B—C5B—H5BA 112.8
O3A—C6A—O5A 117.86 (18) O4B—C6B—O6B 117.93 (17)
O3A—C6A—C7A 125.73 (18) O4B—C6B—C7B 125.12 (19)
O5A—C6A—C7A 116.36 (16) O6B—C6B—C7B 116.91 (17)
C5A—C7A—C6A 124.74 (17) C5B—C7B—C8B 124.97 (17)
C5A—C7A—C8A 116.08 (18) C5B—C7B—C6B 115.77 (18)
C6A—C7A—C8A 119.01 (18) C8B—C7B—C6B 119.03 (18)
O4A—C8A—O6A 118.46 (17) O3B—C8B—O5B 117.70 (18)
O4A—C8A—C7A 124.77 (19) O3B—C8B—C7B 125.61 (19)
O6A—C8A—C7A 116.72 (17) O5B—C8B—C7B 116.63 (16)
O5A—C9A—O6A 109.72 (16) O5B—C9B—O6B 110.01 (16)
O5A—C9A—C13A 111.06 (16) O5B—C9B—C12B 111.21 (17)
O6A—C9A—C13A 110.32 (17) O6B—C9B—C12B 110.41 (17)
O5A—C9A—C14A 106.51 (17) O5B—C9B—C11B 106.25 (17)
O6A—C9A—C14A 106.11 (16) O6B—C9B—C11B 105.43 (17)
C13A—C9A—C14A 112.94 (18) C12B—C9B—C11B 113.30 (18)
C11A—C10A—C14A 111.55 (18) C14B—C10B—C11B 111.61 (19)
C11A—C10A—H10A 109.3 C14B—C10B—H10C 109.3
C14A—C10A—H10A 109.3 C11B—C10B—H10C 109.3
C11A—C10A—H10B 109.3 C14B—C10B—H10D 109.3
C14A—C10A—H10B 109.3 C11B—C10B—H10D 109.3
H10A—C10A—H10B 108.0 H10C—C10B—H10D 108.0
C10A—C11A—C12A 111.68 (18) C9B—C11B—C10B 110.70 (19)
C10A—C11A—H11A 109.3 C9B—C11B—H11C 109.5
C12A—C11A—H11A 109.3 C10B—C11B—H11C 109.5
C10A—C11A—H11B 109.3 C9B—C11B—H11D 109.5
C12A—C11A—H11B 109.3 C10B—C11B—H11D 109.5
H11A—C11A—H11B 107.9 H11C—C11B—H11D 108.1
C11A—C12A—C13A 111.25 (18) C9B—C12B—C13B 111.01 (18)
C11A—C12A—H12C 109.4 C9B—C12B—H12A 109.4
C13A—C12A—H12C 109.4 C13B—C12B—H12A 109.4
C11A—C12A—H12D 109.4 C9B—C12B—H12B 109.4
C13A—C12A—H12D 109.4 C13B—C12B—H12B 109.4
H12C—C12A—H12D 108.0 H12A—C12B—H12B 108.0
C9A—C13A—C12A 110.95 (17) C14B—C13B—C12B 111.74 (19)
C9A—C13A—H13A 109.4 C14B—C13B—H13C 109.3
C12A—C13A—H13A 109.4 C12B—C13B—H13C 109.3
C9A—C13A—H13B 109.4 C14B—C13B—H13D 109.3
C12A—C13A—H13B 109.4 C12B—C13B—H13D 109.3
H13A—C13A—H13B 108.0 H13C—C13B—H13D 107.9
C9A—C14A—C10A 110.81 (18) C10B—C14B—C13B 111.28 (18)
C9A—C14A—H14C 109.5 C10B—C14B—H14A 109.4
C10A—C14A—H14C 109.5 C13B—C14B—H14A 109.4
C9A—C14A—H14D 109.5 C10B—C14B—H14B 109.4
C10A—C14A—H14D 109.5 C13B—C14B—H14B 109.4
H14C—C14A—H14D 108.1 H14A—C14B—H14B 108.0
C3A—C15A—H15A 109.5 C3B—C15B—H15D 109.5
C3A—C15A—H15B 109.5 C3B—C15B—H15E 109.5
H15A—C15A—H15B 109.5 H15D—C15B—H15E 109.5
C3A—C15A—H15C 109.5 C3B—C15B—H15F 109.5
H15A—C15A—H15C 109.5 H15D—C15B—H15F 109.5
H15B—C15A—H15C 109.5 H15E—C15B—H15F 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1A—H1AA···O3A 0.93 2.26 2.878 (3) 123
C4A—H4AA···O4Bi 0.93 2.59 3.408 (3) 147
C1B—H1BA···O4Aii 0.93 2.50 3.376 (3) 157
C2B—H2BA···O3B 0.93 2.26 2.884 (3) 124
C12B—H12B···O4Bi 0.97 2.53 3.420 (3) 152
C13A—H13A···O4Aii 0.97 2.54 3.405 (3) 149

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2861).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Lian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ.24, 441–444.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wei, R. B., Liu, B., Guo, J. J., Liu, Y. & Zhang, D. W. (2008). Chin. J. Org. Chem 28, 1501–1514.
  6. Yaozhong, J., Song, X., Zhi, J., Jingen, D., Aiqiao, M. & Chan, A. S. C. (1998). Tetrahedron Assymetry, 9, 3185–3189.
  7. Zeng, W.-L. & Jian, F. (2009). Acta Cryst. E65, o1875. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680902947X/lh2861sup1.cif

e-65-o2035-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902947X/lh2861Isup2.hkl

e-65-o2035-Isup2.hkl (295.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES