Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 18;65(Pt 8):o1917. doi: 10.1107/S1600536809027718

2,5-Dimethyl­anilinium nitrate

Wajda Smirani a,*, Mohamed Rzaigui a
PMCID: PMC2977111  PMID: 21583603

Abstract

In the title salt, C8H12N+·NO3 , all non-H atoms of the cation lie on mirror planes. The nitrate counteranion has m symmetry and acts as a hydrogen-bond acceptor of N—H⋯O hydrogen bonds, connecting the cations and anions into layers running parallel to the ab plane.

Related literature

Inorganic–organic hybrid materials display a great variety of structural topologies, see: Xiao et al. (2005). For comparative geometrical data in structures containing the same organic groups, see: Smirani & Rzaigui (2009); Souissi et al. (2009).graphic file with name e-65-o1917-scheme1.jpg

Experimental

Crystal data

  • C8H12N+·NO3

  • M r = 184.20

  • Orthorhombic, Inline graphic

  • a = 6.762 (3) Å

  • b = 7.942 (3) Å

  • c = 17.137 (5) Å

  • V = 920.4 (6) Å3

  • Z = 4

  • Ag Kα radiation

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.50 × 0.45 × 0.40 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: none

  • 4249 measured reflections

  • 2365 independent reflections

  • 822 reflections with I > 2σ(I)

  • R int = 0.056

  • 2 standard reflections frequency: 120 min intensity decay: 5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.156

  • S = 0.92

  • 2365 reflections

  • 86 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS ; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027718/hg2534sup1.cif

e-65-o1917-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027718/hg2534Isup2.hkl

e-65-o1917-Isup2.hkl (113.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.95 (2) 1.92 (3) 2.870 (2) 179 (3)
N1—H2A⋯O1ii 0.89 (3) 2.24 (3) 3.037 (3) 149.7 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The combination of organic molecules and inorganic materials was the starting point for the developpement of new hybrid compounds with appropriate physical and chemical properties. These materials have a great interest due to their enormous variety of intriguing structural topologies (Xiao et al., 2005). In order to enrich the varieties in such kinds of hybrid materials and to investigate the influence of hydrogen bonds on the structural features, we report the crystal structure of 2,5 dimethylanilinium nitrate (I).

The title compound crystallizes in the space group Pcmn. Only the non-hydrogen atoms of the cation lie on the mirror planes. As shown in Fig. 1, the asymmetric unit of the crystal structure of this salt is built of half nitrate anion and half 2,5-dimethylanilinium cation. A projection of the structure along the a axis shows that the nitrate anions establish with the ammonium cations multiple hydrogen bonds, to form two inorganic layers at z = 1/4 and 3/4.

The examination of the organic cation shows that the values of the N—C, C—C distances and N—C—C, C—C—C angles range from 1.379 (4) to 1.516 (5) Å and 116. 2(3) to 122.4 (3)°, respectively. These values are similar to those obtained in other organic materials containing the same organic groups (Smirani and Rzaigui, 2009; Souissi et al. 2009).

Experimental

An ethanolic solution of 2,5-dimethylaniline (10 mmol, in 5 ml) was added drop wise to a magnetically stirred aqueous solution of nitric acid HNO3 (1 M, 10 ml) in equimolar ratio. The so-obtained solution is then filtered to eliminate the white precipitated formed and then stirred for 1 h. After stirring, the reaction mixture was kept at room temperature until apparition of transparent single crystals of 2,5-dimethylanilinium nitrate.

Refinement

The nitrogen H atoms were located in a difference map and freely refined. The other H atoms were positioned geometrically(C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq (C) or 1.5 Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

ORTEP-3 (Farrugia,(1999)) view of (C8H12N)N03 with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of the atomic arrangement of the title compound along the a axis.

Crystal data

C8H12N+·NO3 F(000) = 392
Mr = 184.20 Dx = 1.329 Mg m3
Orthorhombic, Pmcn Ag Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2n 2a Cell parameters from 25 reflections
a = 6.762 (3) Å θ = 9.0–10.5°
b = 7.942 (3) Å µ = 0.06 mm1
c = 17.137 (5) Å T = 293 K
V = 920.4 (6) Å3 Block, colorless
Z = 4 0.50 × 0.45 × 0.40 mm

Data collection

Enraf–Nonius TurboCAD-4 diffractometer Rint = 0.056
Radiation source: fine-focus sealed tube θmax = 28.0°, θmin = 2.2°
graphite h = −8→11
Non–profiled ω scans k = 0→13
4249 measured reflections l = 0→28
2365 independent reflections 2 standard reflections every 120 min
822 reflections with I > 2σ(I) intensity decay: 5%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0632P)2] where P = (Fo2 + 2Fc2)/3
S = 0.92 (Δ/σ)max < 0.001
2365 reflections Δρmax = 0.20 e Å3
86 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.166 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
H1A 0.135 (3) 0.372 (3) 0.2106 (10) 0.086 (7)*
H2A 0.2500 0.209 (4) 0.2009 (14) 0.068 (8)*
C6 0.2500 0.4899 (2) 0.07043 (11) 0.0405 (5)
N1 0.2500 0.3185 (3) 0.18968 (10) 0.0427 (4)
C1 0.2500 0.3315 (2) 0.10432 (10) 0.0349 (4)
C2 0.2500 0.1853 (3) 0.06089 (12) 0.0432 (5)
H2 0.2500 0.0817 0.0862 0.052*
C5 0.2500 0.4935 (3) −0.01074 (13) 0.0507 (6)
H5 0.2500 0.5971 −0.0361 0.061*
C3 0.2500 0.1907 (3) −0.01996 (12) 0.0452 (5)
C4 0.2500 0.3481 (3) −0.05467 (12) 0.0499 (6)
H4 0.2500 0.3559 −0.1088 0.060*
C7 0.2500 0.6490 (3) 0.11749 (13) 0.0550 (6)
H7A 0.3818 0.6722 0.1353 0.083* 0.50
H7B 0.1638 0.6361 0.1616 0.083* 0.50
H7C 0.2044 0.7406 0.0857 0.083* 0.50
C8 0.2500 0.0315 (3) −0.06851 (15) 0.0685 (7)
H8A 0.1164 0.0016 −0.0814 0.103* 0.50
H8B 0.3098 −0.0582 −0.0393 0.103* 0.50
H8C 0.3238 0.0501 −0.1156 0.103* 0.50
N2 0.2500 0.9146 (2) 0.26822 (9) 0.0425 (4)
O1 0.09203 (15) 0.98204 (16) 0.24632 (7) 0.0604 (4)
O2 0.2500 0.7900 (2) 0.30947 (10) 0.0672 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C6 0.0373 (10) 0.0419 (11) 0.0424 (10) 0.000 0.000 0.0018 (9)
N1 0.0501 (10) 0.0419 (11) 0.0360 (9) 0.000 0.000 0.0017 (8)
C1 0.0330 (9) 0.0399 (10) 0.0318 (9) 0.000 0.000 0.0012 (8)
C2 0.0458 (11) 0.0363 (11) 0.0476 (11) 0.000 0.000 0.0020 (9)
C5 0.0620 (15) 0.0427 (11) 0.0474 (12) 0.000 0.000 0.0089 (10)
C3 0.0411 (11) 0.0505 (13) 0.0440 (11) 0.000 0.000 −0.0092 (10)
C4 0.0506 (12) 0.0630 (15) 0.0361 (10) 0.000 0.000 0.0019 (10)
C7 0.0642 (14) 0.0425 (12) 0.0584 (13) 0.000 0.000 −0.0034 (11)
C8 0.0796 (19) 0.0673 (16) 0.0586 (14) 0.000 0.000 −0.0229 (13)
N2 0.0476 (10) 0.0425 (10) 0.0374 (9) 0.000 0.000 −0.0025 (8)
O1 0.0435 (6) 0.0667 (9) 0.0708 (7) 0.0079 (5) 0.0007 (6) 0.0138 (6)
O2 0.0868 (13) 0.0550 (10) 0.0598 (10) 0.000 0.000 0.0189 (9)

Geometric parameters (Å, °)

C6—C1 1.385 (3) C3—C8 1.514 (3)
C6—C5 1.391 (3) C4—H4 0.9300
C6—C7 1.499 (3) C7—H7A 0.9600
N1—C1 1.467 (2) C7—H7B 0.9600
N1—H1A 0.95 (2) C7—H7C 0.9600
N1—H2A 0.89 (3) C8—H8A 0.9600
C1—C2 1.379 (3) C8—H8B 0.9600
C2—C3 1.386 (3) C8—H8C 0.9600
C2—H2 0.9300 N2—O2 1.216 (2)
C5—C4 1.379 (3) N2—O1 1.2525 (14)
C5—H5 0.9300 N2—O1i 1.2525 (14)
C3—C4 1.384 (3)
C1—C6—C5 115.98 (18) C5—C4—C3 121.46 (19)
C1—C6—C7 122.67 (18) C5—C4—H4 119.3
C5—C6—C7 121.35 (19) C3—C4—H4 119.3
C1—N1—H1A 110.2 (11) C6—C7—H7A 109.5
C1—N1—H2A 106.6 (16) C6—C7—H7B 109.5
H1A—N1—H2A 110.6 (14) H7A—C7—H7B 109.5
C2—C1—C6 122.56 (17) C6—C7—H7C 109.5
C2—C1—N1 118.60 (18) H7A—C7—H7C 109.5
C6—C1—N1 118.84 (17) H7B—C7—H7C 109.5
C1—C2—C3 120.9 (2) C3—C8—H8A 109.5
C1—C2—H2 119.6 C3—C8—H8B 109.5
C3—C2—H2 119.6 H8A—C8—H8B 109.5
C4—C5—C6 121.9 (2) C3—C8—H8C 109.5
C4—C5—H5 119.1 H8A—C8—H8C 109.5
C6—C5—H5 119.1 H8B—C8—H8C 109.5
C4—C3—C2 117.2 (2) O2—N2—O1 121.48 (9)
C4—C3—C8 121.2 (2) O2—N2—O1i 121.48 (9)
C2—C3—C8 121.6 (2) O1—N2—O1i 117.04 (17)
C5—C6—C1—C2 0.0 C7—C6—C5—C4 180.0
C7—C6—C1—C2 180.0 C1—C2—C3—C4 0.0
C5—C6—C1—N1 180.0 C1—C2—C3—C8 180.0
C7—C6—C1—N1 0.0 C6—C5—C4—C3 0.0
C6—C1—C2—C3 0.0 C2—C3—C4—C5 0.0
N1—C1—C2—C3 180.0 C8—C3—C4—C5 180.0
C1—C6—C5—C4 0.0

Symmetry codes: (i) −x+1/2, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1ii 0.95 (2) 1.92 (3) 2.870 (2) 179 (3)
N1—H2A···O1iii 0.89 (3) 2.24 (3) 3.037 (3) 150 (1)

Symmetry codes: (ii) −x, y−1/2, −z+1/2; (iii) −x+1/2, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2534).

References

  1. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Smirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, o83. [DOI] [PMC free article] [PubMed]
  7. Souissi, S., Smirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, m442. [DOI] [PMC free article] [PubMed]
  8. Xiao, D., An, H., Wang, E. & Xu, L. (2005). J. Mol. Struct.738, 217–225.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027718/hg2534sup1.cif

e-65-o1917-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027718/hg2534Isup2.hkl

e-65-o1917-Isup2.hkl (113.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES