Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 25;65(Pt 8):m986. doi: 10.1107/S1600536809028177

(Acetyl­acetonato-κ2 O,O′)aqua­[2-(2-nitro­phen­oxy)-N′-(2-oxidobenzyl­idene-κO)acetohydrazidato-κ2 O,N′]manganese(III)

Zi-Jing Xiao a,*
PMCID: PMC2977142  PMID: 21583428

Abstract

In the title complex, [Mn(C15H11N3O5)(C5H7O2)(H2O)], the MnIII ion has a distorted octa­hedral coordination geometry. It is coordinated by a phen­oxy O atom, a hydrazine N atom and a carbonyl O atom of the 2-(2-nitro­phen­oxy)-N′-(2-oxidobenzyl­idene-κO)acetohydrazidate dianion, by two O atoms of the acetyl­acetonate anion and by the O atom of a coordinated water mol­ecule. In the crystal structure, complex mol­ecules are linked into centrosymmetric dimeric units through four inter­molecular O—H⋯O hydrogen bonds involving both H atoms of the coordinated water mol­ecule.

Related literature

For the biological activity and chemical versatility of hydrazone complexes, see: Liu & Gao (1998); Iskander et al. (2001); Cariati et al. (2002); Sreekanth et al. (2004); Bai et al. (2006); Mondal et al. (2008). For phenoxy­acetyl­hydrazone complexes, see: Chen & Liu (2004); Sun et al. (2005); Chen & Liu (2006).graphic file with name e-65-0m986-scheme1.jpg

Experimental

Crystal data

  • [Mn(C15H11N3O5)(C5H7O2)(H2O)]

  • M r = 485.33

  • Monoclinic, Inline graphic

  • a = 8.5217 (6) Å

  • b = 13.9263 (10) Å

  • c = 17.6311 (10) Å

  • β = 92.725 (3)°

  • V = 2090.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 293 K

  • 0.58 × 0.32 × 0.27 mm

Data collection

  • Rigaku R-AXIS RAPID Imaging Plate diffractometer

  • Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999) T min = 0.766, T max = 0.832

  • 4921 measured reflections

  • 4735 independent reflections

  • 3155 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.086

  • S = 0.88

  • 4735 reflections

  • 293 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS98 (Sheldrick, 2008); program(s) used to refine structure: SHELXL98 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028177/fj2221sup1.cif

e-65-0m986-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028177/fj2221Isup2.hkl

e-65-0m986-Isup2.hkl (232KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H01⋯O4i 0.88 2.16 2.955 (2) 150
O1W—H02⋯O2i 0.88 1.96 2.829 (2) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful for financial support from the Natural Science Foundation of Fujian Province of China (No. E0640006).

supplementary crystallographic information

Comment

The design and construction of hydrazone complexes are of great interest due to their various structures and their biological activities and chemical versatility (Liu & Gao, 1998; Iskander et al., 2001; Cariati et al., 2002; Sreekanth et al., 2004; Bai et al., 2006; Mondal et al., 2008). Relatively speaking, only a few crystal structures of phenoxyacetylhydrazone complexes have been studied (Chen & Liu, 2004; Sun et al., 2005; Chen & Liu, 2006).

As shown in Fig. 1, the MnIII ion in (I) is octahedrally coordinated by phenol atom O1, hydrazine atom N1 and carbonyl atom O2 from the phenoxyacetylhydrazone ligand L2-, two oxygen atoms (O6 and O7) from an acac- ligand, and O1W atom from coordinated water molecule. Atoms O1, N1, O2 and O7 form the equatorial plane, while the atoms O6 and O1W occupy the two axial positions. The bond distance of Mn1—O6(acac-) (2.130 (2) Å) is much longer than the one of Mn1—O7(acac-) (1.921 (1) Å) due to the Jahn-Teller effect of Mn(III) ion.

In most of phenoxyacetylhydrazone complexes, the phenoxy oxygen atom is not coordinated to metal atom. This structural phenomenon is found in the title complex (I) and was also found in several known complexes (Chen & Liu, 2004; Sun et al., 2005; Chen & Liu, 2006).

The complex Co(C2H3O2)(C4H9NO)2(C15H11N3O5) (II) (Sun et al., 2005) and the title complex Mn(C15H11N3O5)(C5H7O2)(H2O) (I) have the same N-salicylaldehyde-N'– (o-nitrophenoxyacyl) hydrazone ligand. The dihedral angles between the two benzene rings of the phenoxyacyl hydrazone ligand in complex (I) is 89.48 (8)°, while the corresponding one in (II) is 44.1 (1)°. This big difference of the two dihedral angles may come from the different sizes of the second ligands in the two complexes.

As shown in Fig. 2, two neighboring complex molecules are linked by four hydrogen bonds O—H(coordinated water molecule)···O(carbonyl O or oxygen in o-nitrate group) to form a centrosymmetrical dimer.

Experimental

The N-salicylaldehyde-N'- (o-nitrophenoxyacyl) hydrazone ligand, (H2L) was prepared according the reference (Sun et al., 2005). H2L (0.05 mmol) and Mn(acac)3 (0.05 mmol) were dissolved in a mixed solution of 10 ml 95% EtOH and 1 ml DMF. The mixture was stirred for 3 h. After one week, Dark-brown crystals of (I) were obtained.

Refinement

The water H atoms (H01 and H02) were located from the difference Fourier map and refined isotropically, with O—H distance restraints of 0.88 Å. The other H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 20% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

Extended centrosymmetrical dimer structure of (I).

Crystal data

[Mn(C15H11N3O5)(C5H7O2)(H2O)] F(000) = 1000
Mr = 485.33 Dx = 1.542 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4921 reflections
a = 8.5217 (6) Å θ = 2.3–27.5°
b = 13.9263 (10) Å µ = 0.69 mm1
c = 17.6311 (10) Å T = 293 K
β = 92.725 (3)° Prism, red-black
V = 2090.0 (2) Å3 0.58 × 0.32 × 0.27 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID Imaging Plate diffractometer 4735 independent reflections
Radiation source: fine-focus sealed tube 3155 reflections with I > 2σ(I)
graphite Rint = 0.046
ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999) h = 0→11
Tmin = 0.766, Tmax = 0.832 k = 0→18
4735 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.042P)2] where P = (Fo2 + 2Fc2)/3
4735 reflections (Δ/σ)max < 0.001
293 parameters Δρmax = 0.41 e Å3
2 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.42210 (3) 0.18422 (2) 0.481380 (18) 0.03308 (10)
N1 0.57698 (19) 0.27034 (12) 0.53316 (9) 0.0331 (4)
N2 0.73611 (19) 0.24037 (13) 0.53073 (10) 0.0375 (4)
N3 0.8041 (2) 0.02849 (16) 0.26015 (12) 0.0533 (5)
O1 0.25674 (16) 0.25554 (11) 0.52037 (9) 0.0418 (4)
O2 0.61556 (15) 0.11671 (10) 0.46352 (8) 0.0378 (3)
O3 0.90604 (16) 0.07570 (10) 0.41027 (8) 0.0388 (3)
O4 0.8243 (2) −0.04084 (13) 0.30114 (10) 0.0592 (5)
O5 0.7271 (3) 0.02349 (18) 0.20070 (14) 0.1154 (10)
O6 0.44030 (18) 0.26593 (11) 0.38003 (9) 0.0456 (4)
O7 0.29877 (16) 0.09269 (10) 0.42284 (8) 0.0378 (3)
O1W 0.39896 (18) 0.07903 (11) 0.57926 (8) 0.0445 (4)
H01 0.3227 0.0898 0.6102 0.084 (10)*
H02 0.3985 0.0165 0.5720 0.059 (8)*
C1 0.2598 (2) 0.34515 (15) 0.54655 (12) 0.0363 (5)
C2 0.3993 (2) 0.39648 (15) 0.56558 (11) 0.0356 (5)
C3 0.3901 (3) 0.49157 (16) 0.59191 (12) 0.0447 (6)
H3A 0.4822 0.5254 0.6036 0.054*
C4 0.2482 (3) 0.53520 (17) 0.60058 (14) 0.0545 (6)
H4A 0.2434 0.5984 0.6173 0.065*
C5 0.1116 (3) 0.48358 (19) 0.58401 (14) 0.0547 (7)
H5A 0.0149 0.5125 0.5907 0.066*
C6 0.1161 (3) 0.39072 (17) 0.55798 (13) 0.0474 (6)
H6A 0.0226 0.3576 0.5478 0.057*
C7 0.5521 (2) 0.35502 (15) 0.55894 (11) 0.0364 (5)
H7A 0.6389 0.3919 0.5743 0.044*
C8 0.7392 (2) 0.16010 (15) 0.49417 (12) 0.0342 (5)
C9 0.8935 (2) 0.10965 (16) 0.48634 (12) 0.0398 (5)
H9A 0.9791 0.1536 0.4990 0.048*
H9B 0.9013 0.0559 0.5213 0.048*
C10 0.9278 (2) 0.14196 (15) 0.35479 (12) 0.0361 (5)
C11 0.8798 (2) 0.11932 (16) 0.27964 (13) 0.0406 (5)
C12 0.9049 (3) 0.18249 (19) 0.22091 (14) 0.0531 (6)
H12A 0.8707 0.1669 0.1716 0.064*
C13 0.9798 (3) 0.26774 (18) 0.23514 (16) 0.0570 (7)
H13A 0.9990 0.3095 0.1955 0.068*
C14 1.0266 (3) 0.29151 (18) 0.30817 (16) 0.0552 (7)
H14A 1.0773 0.3497 0.3177 0.066*
C15 0.9996 (3) 0.23052 (17) 0.36756 (13) 0.0457 (6)
H15A 1.0297 0.2488 0.4169 0.055*
C16 0.4860 (4) 0.28832 (19) 0.25042 (16) 0.0682 (8)
H16A 0.4550 0.3539 0.2572 0.102*
H16B 0.4391 0.2643 0.2036 0.102*
H16C 0.5983 0.2848 0.2489 0.102*
C17 0.4325 (3) 0.22903 (17) 0.31512 (13) 0.0446 (5)
C18 0.3747 (3) 0.13544 (18) 0.29967 (13) 0.0479 (6)
H18A 0.3812 0.1129 0.2503 0.057*
C19 0.3099 (2) 0.07523 (16) 0.35096 (12) 0.0378 (5)
C20 0.2423 (3) −0.01982 (16) 0.32597 (13) 0.0471 (6)
H20A 0.1363 −0.0249 0.3417 0.071*
H20B 0.3044 −0.0707 0.3486 0.071*
H20C 0.2430 −0.0246 0.2717 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.03206 (16) 0.03084 (17) 0.03640 (18) 0.00197 (14) 0.00244 (12) −0.00560 (15)
N1 0.0330 (9) 0.0332 (10) 0.0331 (9) 0.0030 (7) 0.0021 (8) −0.0026 (8)
N2 0.0315 (9) 0.0399 (11) 0.0413 (10) 0.0049 (8) 0.0021 (8) −0.0051 (8)
N3 0.0568 (12) 0.0530 (14) 0.0498 (13) −0.0075 (11) −0.0001 (11) −0.0056 (11)
O1 0.0340 (8) 0.0387 (8) 0.0533 (9) 0.0027 (6) 0.0078 (7) −0.0123 (7)
O2 0.0343 (7) 0.0318 (8) 0.0475 (9) 0.0009 (6) 0.0037 (7) −0.0063 (7)
O3 0.0420 (8) 0.0379 (8) 0.0371 (8) 0.0071 (7) 0.0087 (7) −0.0008 (7)
O4 0.0740 (12) 0.0437 (10) 0.0604 (11) −0.0057 (9) 0.0091 (9) −0.0050 (9)
O5 0.158 (2) 0.0944 (18) 0.0865 (16) −0.0486 (17) −0.0697 (17) 0.0141 (13)
O6 0.0578 (10) 0.0365 (9) 0.0425 (9) −0.0007 (7) 0.0016 (8) 0.0018 (7)
O7 0.0405 (8) 0.0375 (8) 0.0353 (8) −0.0033 (6) 0.0028 (7) −0.0057 (6)
O1W 0.0534 (9) 0.0368 (9) 0.0437 (9) 0.0019 (7) 0.0092 (8) −0.0013 (7)
C1 0.0419 (11) 0.0358 (12) 0.0314 (11) 0.0069 (9) 0.0029 (9) −0.0015 (9)
C2 0.0431 (12) 0.0333 (11) 0.0308 (11) 0.0058 (9) 0.0046 (9) −0.0037 (9)
C3 0.0544 (14) 0.0377 (13) 0.0417 (13) 0.0053 (11) 0.0009 (11) −0.0045 (10)
C4 0.0717 (17) 0.0369 (13) 0.0547 (15) 0.0181 (13) 0.0010 (13) −0.0090 (11)
C5 0.0528 (15) 0.0583 (16) 0.0531 (15) 0.0241 (13) 0.0040 (12) −0.0089 (13)
C6 0.0435 (12) 0.0493 (14) 0.0496 (14) 0.0105 (11) 0.0046 (11) −0.0072 (12)
C7 0.0390 (11) 0.0357 (12) 0.0345 (12) −0.0007 (9) 0.0009 (9) −0.0056 (10)
C8 0.0368 (11) 0.0346 (12) 0.0317 (11) 0.0044 (9) 0.0055 (9) 0.0018 (9)
C9 0.0390 (11) 0.0450 (13) 0.0356 (11) 0.0108 (10) 0.0033 (10) 0.0003 (10)
C10 0.0312 (10) 0.0357 (12) 0.0418 (12) 0.0075 (9) 0.0060 (9) 0.0010 (10)
C11 0.0383 (11) 0.0377 (12) 0.0458 (13) 0.0023 (10) 0.0029 (10) 0.0002 (11)
C12 0.0585 (15) 0.0573 (16) 0.0432 (13) 0.0045 (13) 0.0004 (12) 0.0036 (12)
C13 0.0642 (16) 0.0482 (16) 0.0591 (17) 0.0034 (13) 0.0090 (14) 0.0146 (13)
C14 0.0601 (15) 0.0359 (13) 0.0701 (18) −0.0029 (11) 0.0095 (14) −0.0009 (12)
C15 0.0488 (13) 0.0409 (14) 0.0476 (14) 0.0043 (11) 0.0052 (11) −0.0057 (11)
C16 0.096 (2) 0.0565 (17) 0.0538 (16) 0.0007 (16) 0.0162 (15) 0.0136 (14)
C17 0.0465 (13) 0.0467 (14) 0.0407 (13) 0.0076 (11) 0.0050 (11) 0.0033 (11)
C18 0.0598 (15) 0.0477 (14) 0.0368 (12) 0.0032 (12) 0.0082 (11) −0.0041 (11)
C19 0.0361 (11) 0.0377 (12) 0.0394 (12) 0.0066 (9) −0.0007 (10) −0.0084 (10)
C20 0.0523 (14) 0.0431 (14) 0.0456 (13) 0.0005 (11) 0.0000 (11) −0.0126 (11)

Geometric parameters (Å, °)

Mn1—O1 1.8806 (14) C5—C6 1.373 (3)
Mn1—O7 1.9214 (14) C5—H5A 0.9300
Mn1—O2 1.9366 (13) C6—H6A 0.9300
Mn1—N1 1.9746 (16) C7—H7A 0.9300
Mn1—O6 2.1303 (15) C8—C9 1.503 (3)
Mn1—O1W 2.2793 (15) C9—H9A 0.9700
N1—C7 1.285 (3) C9—H9B 0.9700
N1—N2 1.421 (2) C10—C15 1.390 (3)
N2—C8 1.291 (3) C10—C11 1.404 (3)
N3—O5 1.212 (3) C11—C12 1.383 (3)
N3—O4 1.213 (2) C12—C13 1.366 (4)
N3—C11 1.454 (3) C12—H12A 0.9300
O1—C1 1.330 (2) C13—C14 1.370 (4)
O2—C8 1.309 (2) C13—H13A 0.9300
O3—C10 1.364 (2) C14—C15 1.376 (3)
O3—C9 1.431 (2) C14—H14A 0.9300
O6—C17 1.253 (3) C15—H15A 0.9300
O7—C19 1.298 (2) C16—C17 1.497 (3)
O1W—H01 0.8802 C16—H16A 0.9600
O1W—H02 0.8799 C16—H16B 0.9600
C1—C6 1.402 (3) C16—H16C 0.9600
C1—C2 1.414 (3) C17—C18 1.415 (3)
C2—C3 1.407 (3) C18—C19 1.368 (3)
C2—C7 1.435 (3) C18—H18A 0.9300
C3—C4 1.368 (3) C19—C20 1.501 (3)
C3—H3A 0.9300 C20—H20A 0.9600
C4—C5 1.387 (4) C20—H20B 0.9600
C4—H4A 0.9300 C20—H20C 0.9600
O1—Mn1—O7 98.43 (6) C2—C7—H7A 117.8
O1—Mn1—O2 166.98 (7) N2—C8—O2 124.81 (18)
O7—Mn1—O2 92.22 (6) N2—C8—C9 119.28 (19)
O1—Mn1—N1 90.36 (7) O2—C8—C9 115.90 (18)
O7—Mn1—N1 171.05 (6) O3—C9—C8 110.20 (16)
O2—Mn1—N1 79.31 (6) O3—C9—H9A 109.6
O1—Mn1—O6 96.33 (7) C8—C9—H9A 109.6
O7—Mn1—O6 87.91 (6) O3—C9—H9B 109.6
O2—Mn1—O6 91.51 (6) C8—C9—H9B 109.6
N1—Mn1—O6 89.40 (6) H9A—C9—H9B 108.1
O1—Mn1—O1W 88.25 (6) O3—C10—C15 123.9 (2)
O7—Mn1—O1W 85.15 (6) O3—C10—C11 118.78 (19)
O2—Mn1—O1W 85.19 (6) C15—C10—C11 117.3 (2)
N1—Mn1—O1W 96.91 (6) C12—C11—C10 121.0 (2)
O6—Mn1—O1W 172.19 (6) C12—C11—N3 117.3 (2)
C7—N1—N2 116.98 (17) C10—C11—N3 121.6 (2)
C7—N1—Mn1 127.08 (14) C13—C12—C11 120.2 (2)
N2—N1—Mn1 115.18 (12) C13—C12—H12A 119.9
C8—N2—N1 108.13 (16) C11—C12—H12A 119.9
O5—N3—O4 121.7 (2) C12—C13—C14 119.7 (2)
O5—N3—C11 118.1 (2) C12—C13—H13A 120.2
O4—N3—C11 120.2 (2) C14—C13—H13A 120.2
C1—O1—Mn1 128.29 (13) C13—C14—C15 120.9 (2)
C8—O2—Mn1 112.55 (12) C13—C14—H14A 119.5
C10—O3—C9 117.88 (17) C15—C14—H14A 119.5
C17—O6—Mn1 122.95 (15) C14—C15—C10 120.8 (2)
C19—O7—Mn1 125.80 (13) C14—C15—H15A 119.6
Mn1—O1W—H01 116.9 C10—C15—H15A 119.6
Mn1—O1W—H02 121.7 C17—C16—H16A 109.5
H01—O1W—H02 105.0 C17—C16—H16B 109.5
O1—C1—C6 118.1 (2) H16A—C16—H16B 109.5
O1—C1—C2 123.98 (18) C17—C16—H16C 109.5
C6—C1—C2 117.85 (19) H16A—C16—H16C 109.5
C3—C2—C1 119.68 (19) H16B—C16—H16C 109.5
C3—C2—C7 118.1 (2) O6—C17—C18 123.8 (2)
C1—C2—C7 122.25 (18) O6—C17—C16 117.7 (2)
C4—C3—C2 121.2 (2) C18—C17—C16 118.5 (2)
C4—C3—H3A 119.4 C19—C18—C17 125.8 (2)
C2—C3—H3A 119.4 C19—C18—H18A 117.1
C3—C4—C5 118.9 (2) C17—C18—H18A 117.1
C3—C4—H4A 120.5 O7—C19—C18 125.5 (2)
C5—C4—H4A 120.5 O7—C19—C20 113.99 (19)
C6—C5—C4 121.5 (2) C18—C19—C20 120.5 (2)
C6—C5—H5A 119.3 C19—C20—H20A 109.5
C4—C5—H5A 119.3 C19—C20—H20B 109.5
C5—C6—C1 120.8 (2) H20A—C20—H20B 109.5
C5—C6—H6A 119.6 C19—C20—H20C 109.5
C1—C6—H6A 119.6 H20A—C20—H20C 109.5
N1—C7—C2 124.32 (19) H20B—C20—H20C 109.5
N1—C7—H7A 117.8
O1—Mn1—N1—C7 −18.44 (18) O1—C1—C6—C5 −179.2 (2)
O2—Mn1—N1—C7 169.54 (18) C2—C1—C6—C5 2.5 (3)
O6—Mn1—N1—C7 77.89 (17) N2—N1—C7—C2 −179.77 (19)
O1W—Mn1—N1—C7 −106.72 (17) Mn1—N1—C7—C2 10.7 (3)
O1—Mn1—N1—N2 171.88 (14) C3—C2—C7—N1 −177.42 (19)
O2—Mn1—N1—N2 −0.15 (13) C1—C2—C7—N1 2.5 (3)
O6—Mn1—N1—N2 −91.80 (14) N1—N2—C8—O2 1.6 (3)
O1W—Mn1—N1—N2 83.60 (13) N1—N2—C8—C9 −177.13 (17)
C7—N1—N2—C8 −171.41 (17) Mn1—O2—C8—N2 −1.8 (3)
Mn1—N1—N2—C8 −0.6 (2) Mn1—O2—C8—C9 176.98 (14)
O7—Mn1—O1—C1 −157.85 (17) C10—O3—C9—C8 71.6 (2)
O2—Mn1—O1—C1 57.6 (4) N2—C8—C9—O3 −136.04 (19)
N1—Mn1—O1—C1 20.41 (17) O2—C8—C9—O3 45.1 (2)
O6—Mn1—O1—C1 −69.03 (17) C9—O3—C10—C15 27.0 (3)
O1W—Mn1—O1—C1 117.32 (17) C9—O3—C10—C11 −155.01 (18)
O1—Mn1—O2—C8 −37.1 (3) O3—C10—C11—C12 −177.42 (19)
O7—Mn1—O2—C8 177.99 (13) C15—C10—C11—C12 0.7 (3)
N1—Mn1—O2—C8 0.91 (13) O3—C10—C11—N3 1.6 (3)
O6—Mn1—O2—C8 90.02 (14) C15—C10—C11—N3 179.81 (19)
O1W—Mn1—O2—C8 −97.07 (13) O5—N3—C11—C12 −21.3 (4)
O1—Mn1—O6—C17 −125.31 (18) O4—N3—C11—C12 155.4 (2)
O7—Mn1—O6—C17 −27.06 (18) O5—N3—C11—C10 159.6 (2)
O2—Mn1—O6—C17 65.11 (18) O4—N3—C11—C10 −23.7 (3)
N1—Mn1—O6—C17 144.40 (18) C10—C11—C12—C13 1.1 (4)
O1—Mn1—O7—C19 125.06 (16) N3—C11—C12—C13 −178.0 (2)
O2—Mn1—O7—C19 −62.46 (16) C11—C12—C13—C14 −1.6 (4)
O6—Mn1—O7—C19 28.97 (16) C12—C13—C14—C15 0.2 (4)
O1W—Mn1—O7—C19 −147.44 (16) C13—C14—C15—C10 1.7 (4)
Mn1—O1—C1—C6 166.84 (16) O3—C10—C15—C14 175.9 (2)
Mn1—O1—C1—C2 −15.0 (3) C11—C10—C15—C14 −2.2 (3)
O1—C1—C2—C3 179.15 (19) Mn1—O6—C17—C18 15.6 (3)
C6—C1—C2—C3 −2.6 (3) Mn1—O6—C17—C16 −165.12 (17)
O1—C1—C2—C7 −0.8 (3) O6—C17—C18—C19 4.8 (4)
C6—C1—C2—C7 177.4 (2) C16—C17—C18—C19 −174.5 (2)
C1—C2—C3—C4 1.0 (3) Mn1—O7—C19—C18 −20.4 (3)
C7—C2—C3—C4 −179.1 (2) Mn1—O7—C19—C20 160.21 (14)
C2—C3—C4—C5 1.0 (4) C17—C18—C19—O7 −3.8 (4)
C3—C4—C5—C6 −1.1 (4) C17—C18—C19—C20 175.6 (2)
C4—C5—C6—C1 −0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H01···O4i 0.88 2.16 2.955 (2) 150
O1W—H02···O2i 0.88 1.96 2.829 (2) 169

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2221).

References

  1. Bai, Y., Dang, D.-B., Cao, X., Duan, C.-Y. & Meng, Q.-J. (2006). Inorg. Chem. Commun.9, 86–89.
  2. Cariati, F., Caruso, U., Centore, R., Marcolli, W., De Maria, A., Panunzi, B., Roviello, A. & Tuzi, A. (2002). Inorg. Chem.41, 6597–6603. [DOI] [PubMed]
  3. Chen, X.-H. & Liu, S.-X. (2004). Chin. J. Struct. Chem.23, 33–37.
  4. Chen, X.-H. & Liu, S.-X. (2006). Acta Cryst. E62, m2869–m2871.
  5. Iskander, M. F., Khalil, T. E., Haase, W., Werner, R., Svoboda, I. & Fuess, H. (2001). Polyhedron, 20, 2787–2798.
  6. Liu, S.-X. & Gao, S. (1998). Polyhedron, 17, 81–84.
  7. McArdle, P. (1995). J. Appl. Cryst.28, 65. [DOI] [PMC free article] [PubMed]
  8. Molecular Structure Corporation (1999). TEXRAY and TEXSAN MSC, The Woodlands, Texas, USA.
  9. Mondal, B., Drew, M. G. B., Banerjee, R. & Ghosh, T. (2008). Polyhedron, 27, 3197–3206.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41–47.
  12. Sun, M.-M., Li, W.-P. & Liu, S.-X. (2005). Acta Cryst. E61, m1818–m1820.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028177/fj2221sup1.cif

e-65-0m986-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028177/fj2221Isup2.hkl

e-65-0m986-Isup2.hkl (232KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES