Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 8;65(Pt 8):o1792. doi: 10.1107/S1600536809025070

11-(p-Tolylsulfonyl)-8,14,24-trioxa-11,22,23-triazatetracyclo[19.2.1.02,7.015,20]tetracosa-1(23),2,4,6,15,17,19,21-octaene

Xia Tian a, Jian-Rong Han a,*, Xiao-Li Zhen a, Zhen-Chao Li a, Shou-Xin Liu b,
PMCID: PMC2977147  PMID: 21583498

Abstract

In the title compound, C25H23N3O5S, the central 1,3,4-oxadiazole ring makes dihedral angles of 35.05 (7), 23.68 (7) and 82.55 (8)°, with the three benzene rings. In the crystal structure, the packing is stabilized by weak non-classical inter­molecular C—H⋯O hydrogen bonds, which link the mol­ecules into an infinite network.

Related literature

For related structures, see: Du, Hua & Jin (2001). For applications and synthesis of fluorescent sensors, see: Tong et al. (2000); Silva et al. (2000); Valeur & Leray (2000). For reference geometrical data, see: Du, Hua, Wang & Yan (2001).graphic file with name e-65-o1792-scheme1.jpg

Experimental

Crystal data

  • C25H23N3O5S

  • M r = 477.52

  • Monoclinic, Inline graphic

  • a = 13.0474 (19) Å

  • b = 9.6809 (14) Å

  • c = 18.261 (3) Å

  • β = 97.479 (3)°

  • V = 2286.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 294 K

  • 0.30 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.932, T max = 0.964

  • 12599 measured reflections

  • 4656 independent reflections

  • 2878 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.106

  • S = 1.01

  • 4656 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025070/pv2175sup1.cif

e-65-o1792-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025070/pv2175Isup2.hkl

e-65-o1792-Isup2.hkl (228.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O4i 0.97 2.52 3.424 (3) 154
C20—H20⋯O4i 0.93 2.39 3.314 (3) 173
C5—H5⋯O4ii 0.93 2.51 3.253 (3) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the NSFC of Hebei Province (No. B2009000670), the Foundation of the Education Department of Hebei Province and the Foundation of Hebei University of Science & Technology (No. XL200746), which are gratefully acknowledged.

supplementary crystallographic information

Comment

The development of fluorescent sensors for organic molecules is of great practical importance in chemical, biological, and pharmaceutical sciences (Silva et al., 2000; Valeur et al., 2000). Therefore, the design and synthesis of new functionalized macrocycles for selective recognition of other species is of great interest to chemists. Many functionalized macrocycles have been synthesized and employed to develop fluorescent sensors (Tong et al., 2000). 2,5-Diaryl-1,3,4-oxadizole forms chiral macrocyclic phosphoramidate receptors with phosphorus oxychloride, and their crystal structures have been reported (Du, Hua & Jin, 2001). As part of an investigation of the potential recognition properties of macrocycles, we now reported the synthesis and structure of the title compound, (I).

The molecular structure of (I) is presented in Fig. 1. The oxadizole ring (O1/C1/N1/N2/C18) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0017 Å. It makes dihedral angles of 35.05 (7), 23.68 (7) and 82.55 (8)°, respectively, with the benzene rings (C2—C7), (C12—C17) and (C19—C24). The crystal packing is stabilized by weak non-classical intermolecular C—H···O hydrogen bonds which link the molecules into an infinite network. The bond lengths and angles in (I) are within their normal ranges (Du, Hua, Wang & Yan 2001).

Experimental

2,5-Di(o-hydroxyphenyl)-1,3,4-oxadiazole (0.8 g, 3.0 mmol), K2CO3 (1.4 g, 10 mmol) and tri-(p-phenylsulfonyl) diethanol amine (2.3 g, 4 mmol) were added and dissolved in 50 ml of DMF and the mixture was stirred at 413 K for 20 h giving a colourless precipitate. The product was isolated, recrystallized from ethyl acetate then dried in a vacuum to give the pure compound in 65% yield. colourless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of ethyl acetate.

Refinement

The H atoms were included in calculated positions (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C)or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Packing diagram for (I), with H bonds drawn as dashed lines; H-atoms not involved in interactions have been excluded.

Crystal data

C25H23N3O5S F(000) = 1000
Mr = 477.52 Dx = 1.387 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3043 reflections
a = 13.0474 (19) Å θ = 2.4–24.5°
b = 9.6809 (14) Å µ = 0.19 mm1
c = 18.261 (3) Å T = 294 K
β = 97.479 (3)° Prism, colourless
V = 2286.9 (6) Å3 0.30 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 4656 independent reflections
Radiation source: fine-focus sealed tube 2878 reflections with I > 2σ(I)
graphite Rint = 0.044
φ and ω scans θmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→16
Tmin = 0.932, Tmax = 0.964 k = −12→11
12599 measured reflections l = −18→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.4604P] where P = (Fo2 + 2Fc2)/3
4656 reflections (Δ/σ)max = 0.001
308 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.08777 (4) 1.10726 (6) 0.12913 (3) 0.03359 (16)
N1 0.52489 (14) 0.5209 (2) 0.19897 (11) 0.0429 (5)
N2 0.56917 (14) 0.5766 (2) 0.13898 (11) 0.0433 (5)
N3 0.18176 (14) 0.99856 (19) 0.12592 (10) 0.0368 (5)
O1 0.40350 (11) 0.62864 (15) 0.12555 (8) 0.0346 (4)
O2 0.26584 (14) 0.73372 (16) 0.20414 (9) 0.0478 (5)
O3 0.35451 (12) 0.84722 (17) 0.04510 (8) 0.0452 (4)
O4 −0.00564 (11) 1.04490 (16) 0.09383 (9) 0.0417 (4)
O5 0.09239 (13) 1.15346 (17) 0.20368 (9) 0.0470 (4)
C1 0.42829 (17) 0.5545 (2) 0.18849 (12) 0.0317 (5)
C2 0.34817 (16) 0.5205 (2) 0.23424 (11) 0.0317 (5)
C3 0.35206 (18) 0.3940 (2) 0.27068 (12) 0.0397 (6)
H3 0.4059 0.3331 0.2658 0.048*
C4 0.27714 (19) 0.3576 (2) 0.31399 (13) 0.0437 (6)
H4 0.2803 0.2728 0.3381 0.052*
C5 0.19776 (19) 0.4482 (3) 0.32114 (13) 0.0443 (6)
H5 0.1467 0.4236 0.3498 0.053*
C6 0.19281 (19) 0.5752 (2) 0.28641 (13) 0.0424 (6)
H6 0.1393 0.6360 0.2924 0.051*
C7 0.26729 (18) 0.6122 (2) 0.24268 (12) 0.0354 (5)
C8 0.2383 (2) 0.8580 (2) 0.23870 (13) 0.0436 (6)
H8A 0.2783 0.8672 0.2871 0.052*
H8B 0.1656 0.8563 0.2448 0.052*
C9 0.26014 (17) 0.9778 (2) 0.19023 (12) 0.0380 (6)
H9A 0.2653 1.0614 0.2197 0.046*
H9B 0.3266 0.9629 0.1731 0.046*
C10 0.18136 (17) 0.9098 (2) 0.06069 (12) 0.0354 (5)
H10A 0.1165 0.9236 0.0291 0.042*
H10B 0.1832 0.8143 0.0769 0.042*
C11 0.26861 (17) 0.9320 (2) 0.01498 (13) 0.0393 (6)
H11A 0.2465 0.9067 −0.0360 0.047*
H11B 0.2888 1.0285 0.0165 0.047*
C12 0.42882 (17) 0.8148 (2) 0.00178 (12) 0.0351 (5)
C13 0.43787 (18) 0.8787 (3) −0.06523 (13) 0.0429 (6)
H13 0.3909 0.9467 −0.0833 0.052*
C14 0.51633 (19) 0.8415 (3) −0.10495 (14) 0.0473 (7)
H14 0.5211 0.8837 −0.1501 0.057*
C15 0.58800 (19) 0.7424 (3) −0.07867 (14) 0.0470 (7)
H15 0.6413 0.7190 −0.1055 0.056*
C16 0.57964 (18) 0.6787 (2) −0.01234 (13) 0.0413 (6)
H16 0.6278 0.6119 0.0054 0.050*
C17 0.50033 (16) 0.7125 (2) 0.02867 (12) 0.0323 (5)
C18 0.49498 (16) 0.6389 (2) 0.09783 (12) 0.0320 (5)
C19 0.11113 (16) 1.2493 (2) 0.07299 (12) 0.0329 (5)
C20 0.09314 (19) 1.2366 (2) −0.00310 (13) 0.0418 (6)
H20 0.0687 1.1537 −0.0244 0.050*
C21 0.1115 (2) 1.3470 (3) −0.04719 (14) 0.0483 (7)
H21 0.0993 1.3378 −0.0983 0.058*
C22 0.14769 (19) 1.4715 (2) −0.01674 (15) 0.0450 (6)
C23 0.16432 (19) 1.4821 (2) 0.05905 (15) 0.0491 (7)
H23 0.1883 1.5651 0.0804 0.059*
C24 0.14638 (18) 1.3728 (2) 0.10435 (14) 0.0425 (6)
H24 0.1580 1.3825 0.1554 0.051*
C25 0.1681 (3) 1.5912 (3) −0.06588 (18) 0.0734 (9)
H25A 0.1336 1.6721 −0.0511 0.110*
H25B 0.1425 1.5692 −0.1162 0.110*
H25C 0.2411 1.6082 −0.0616 0.110*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0316 (3) 0.0310 (3) 0.0389 (3) 0.0016 (2) 0.0070 (2) −0.0041 (3)
N1 0.0330 (12) 0.0535 (13) 0.0413 (12) 0.0021 (10) 0.0018 (9) 0.0105 (10)
N2 0.0297 (11) 0.0533 (13) 0.0470 (12) 0.0021 (9) 0.0046 (9) 0.0092 (11)
N3 0.0369 (11) 0.0369 (11) 0.0345 (11) 0.0112 (9) −0.0032 (8) −0.0079 (9)
O1 0.0283 (8) 0.0425 (9) 0.0338 (9) 0.0033 (7) 0.0068 (7) 0.0083 (7)
O2 0.0724 (12) 0.0332 (9) 0.0422 (10) 0.0133 (8) 0.0241 (9) 0.0074 (8)
O3 0.0427 (10) 0.0574 (11) 0.0379 (9) 0.0199 (8) 0.0143 (8) 0.0123 (8)
O4 0.0284 (8) 0.0413 (9) 0.0558 (10) −0.0063 (7) 0.0069 (7) −0.0041 (8)
O5 0.0565 (11) 0.0475 (10) 0.0388 (10) 0.0057 (8) 0.0130 (8) −0.0086 (8)
C1 0.0338 (13) 0.0307 (12) 0.0296 (12) −0.0003 (10) 0.0005 (10) 0.0015 (10)
C2 0.0346 (13) 0.0328 (12) 0.0268 (12) −0.0005 (10) 0.0011 (10) 0.0009 (10)
C3 0.0420 (14) 0.0397 (13) 0.0370 (14) 0.0039 (11) 0.0042 (11) 0.0031 (12)
C4 0.0531 (16) 0.0376 (13) 0.0414 (14) −0.0006 (12) 0.0099 (12) 0.0082 (12)
C5 0.0472 (15) 0.0469 (15) 0.0415 (14) −0.0025 (12) 0.0163 (12) 0.0051 (12)
C6 0.0444 (14) 0.0436 (15) 0.0415 (14) 0.0086 (11) 0.0144 (12) 0.0017 (12)
C7 0.0447 (14) 0.0359 (13) 0.0261 (12) 0.0028 (11) 0.0065 (10) 0.0017 (10)
C8 0.0556 (16) 0.0386 (14) 0.0376 (14) 0.0100 (12) 0.0100 (12) −0.0022 (11)
C9 0.0374 (13) 0.0351 (13) 0.0394 (14) 0.0019 (10) −0.0033 (11) −0.0012 (11)
C10 0.0348 (13) 0.0323 (12) 0.0382 (13) 0.0060 (10) 0.0013 (10) −0.0053 (11)
C11 0.0410 (14) 0.0378 (13) 0.0382 (13) 0.0092 (11) 0.0019 (11) 0.0056 (11)
C12 0.0318 (13) 0.0421 (14) 0.0323 (13) 0.0005 (11) 0.0079 (10) −0.0021 (11)
C13 0.0377 (14) 0.0531 (16) 0.0382 (14) 0.0018 (12) 0.0060 (11) 0.0086 (12)
C14 0.0455 (16) 0.0631 (17) 0.0344 (14) −0.0098 (13) 0.0097 (12) 0.0043 (13)
C15 0.0371 (14) 0.0630 (17) 0.0436 (15) −0.0064 (13) 0.0159 (12) −0.0067 (14)
C16 0.0343 (14) 0.0472 (15) 0.0436 (15) 0.0004 (11) 0.0098 (11) −0.0036 (12)
C17 0.0282 (12) 0.0350 (12) 0.0339 (13) −0.0025 (10) 0.0054 (10) −0.0024 (10)
C18 0.0254 (12) 0.0338 (12) 0.0370 (13) −0.0006 (10) 0.0044 (10) −0.0028 (10)
C19 0.0266 (12) 0.0301 (12) 0.0415 (14) 0.0044 (9) 0.0022 (10) −0.0040 (11)
C20 0.0510 (15) 0.0307 (13) 0.0437 (15) −0.0045 (11) 0.0056 (12) −0.0087 (12)
C21 0.0591 (17) 0.0454 (15) 0.0414 (15) −0.0025 (13) 0.0096 (13) −0.0019 (13)
C22 0.0445 (15) 0.0355 (14) 0.0558 (17) 0.0005 (11) 0.0093 (12) 0.0040 (13)
C23 0.0549 (17) 0.0289 (13) 0.0609 (18) −0.0068 (12) −0.0022 (13) −0.0063 (13)
C24 0.0474 (15) 0.0337 (14) 0.0441 (15) −0.0008 (11) −0.0022 (12) −0.0059 (12)
C25 0.094 (2) 0.0480 (17) 0.080 (2) −0.0076 (16) 0.0186 (19) 0.0143 (16)

Geometric parameters (Å, °)

S1—O5 1.4268 (16) C10—C11 1.512 (3)
S1—O4 1.4355 (16) C10—H10A 0.9700
S1—N3 1.6227 (18) C10—H10B 0.9700
S1—C19 1.765 (2) C11—H11A 0.9700
N1—C1 1.292 (3) C11—H11B 0.9700
N1—N2 1.410 (2) C12—C13 1.390 (3)
N2—C18 1.295 (3) C12—C17 1.405 (3)
N3—C9 1.467 (3) C13—C14 1.377 (3)
N3—C10 1.468 (3) C13—H13 0.9300
O1—C1 1.358 (2) C14—C15 1.381 (3)
O1—C18 1.359 (2) C14—H14 0.9300
O2—C7 1.370 (3) C15—C16 1.376 (3)
O2—C8 1.426 (3) C15—H15 0.9300
O3—C12 1.365 (2) C16—C17 1.393 (3)
O3—C11 1.439 (3) C16—H16 0.9300
C1—C2 1.458 (3) C17—C18 1.459 (3)
C2—C3 1.392 (3) C19—C24 1.379 (3)
C2—C7 1.403 (3) C19—C20 1.384 (3)
C3—C4 1.381 (3) C20—C21 1.378 (3)
C3—H3 0.9300 C20—H20 0.9300
C4—C5 1.376 (3) C21—C22 1.384 (3)
C4—H4 0.9300 C21—H21 0.9300
C5—C6 1.381 (3) C22—C23 1.377 (3)
C5—H5 0.9300 C22—C25 1.510 (3)
C6—C7 1.383 (3) C23—C24 1.381 (3)
C6—H6 0.9300 C23—H23 0.9300
C8—C9 1.508 (3) C24—H24 0.9300
C8—H8A 0.9700 C25—H25A 0.9600
C8—H8B 0.9700 C25—H25B 0.9600
C9—H9A 0.9700 C25—H25C 0.9600
C9—H9B 0.9700
O5—S1—O4 119.22 (10) H10A—C10—H10B 107.4
O5—S1—N3 107.43 (10) O3—C11—C10 108.23 (17)
O4—S1—N3 108.21 (9) O3—C11—H11A 110.1
O5—S1—C19 108.71 (10) C10—C11—H11A 110.1
O4—S1—C19 105.52 (10) O3—C11—H11B 110.1
N3—S1—C19 107.21 (10) C10—C11—H11B 110.1
C1—N1—N2 106.20 (18) H11A—C11—H11B 108.4
C18—N2—N1 106.15 (17) O3—C12—C13 123.8 (2)
C9—N3—C10 119.84 (17) O3—C12—C17 116.69 (19)
C9—N3—S1 120.75 (15) C13—C12—C17 119.5 (2)
C10—N3—S1 119.07 (14) C14—C13—C12 120.1 (2)
C1—O1—C18 103.30 (16) C14—C13—H13 120.0
C7—O2—C8 118.99 (17) C12—C13—H13 120.0
C12—O3—C11 119.08 (17) C13—C14—C15 121.0 (2)
N1—C1—O1 112.27 (18) C13—C14—H14 119.5
N1—C1—C2 128.1 (2) C15—C14—H14 119.5
O1—C1—C2 119.65 (18) C16—C15—C14 119.3 (2)
C3—C2—C7 119.0 (2) C16—C15—H15 120.3
C3—C2—C1 119.2 (2) C14—C15—H15 120.3
C7—C2—C1 121.7 (2) C15—C16—C17 121.2 (2)
C4—C3—C2 120.9 (2) C15—C16—H16 119.4
C4—C3—H3 119.5 C17—C16—H16 119.4
C2—C3—H3 119.5 C16—C17—C12 118.9 (2)
C5—C4—C3 119.3 (2) C16—C17—C18 118.3 (2)
C5—C4—H4 120.4 C12—C17—C18 122.82 (19)
C3—C4—H4 120.4 N2—C18—O1 112.08 (19)
C4—C5—C6 121.0 (2) N2—C18—C17 127.8 (2)
C4—C5—H5 119.5 O1—C18—C17 120.08 (19)
C6—C5—H5 119.5 C24—C19—C20 119.8 (2)
C5—C6—C7 120.1 (2) C24—C19—S1 120.53 (18)
C5—C6—H6 120.0 C20—C19—S1 119.62 (17)
C7—C6—H6 120.0 C21—C20—C19 119.9 (2)
O2—C7—C6 123.7 (2) C21—C20—H20 120.1
O2—C7—C2 116.57 (19) C19—C20—H20 120.1
C6—C7—C2 119.7 (2) C20—C21—C22 121.1 (2)
O2—C8—C9 108.12 (18) C20—C21—H21 119.4
O2—C8—H8A 110.1 C22—C21—H21 119.4
C9—C8—H8A 110.1 C23—C22—C21 118.0 (2)
O2—C8—H8B 110.1 C23—C22—C25 121.6 (2)
C9—C8—H8B 110.1 C21—C22—C25 120.4 (2)
H8A—C8—H8B 108.4 C22—C23—C24 121.9 (2)
N3—C9—C8 114.2 (2) C22—C23—H23 119.1
N3—C9—H9A 108.7 C24—C23—H23 119.1
C8—C9—H9A 108.7 C19—C24—C23 119.3 (2)
N3—C9—H9B 108.7 C19—C24—H24 120.4
C8—C9—H9B 108.7 C23—C24—H24 120.4
H9A—C9—H9B 107.6 C22—C25—H25A 109.5
N3—C10—C11 116.19 (19) C22—C25—H25B 109.5
N3—C10—H10A 108.2 H25A—C25—H25B 109.5
C11—C10—H10A 108.2 C22—C25—H25C 109.5
N3—C10—H10B 108.2 H25A—C25—H25C 109.5
C11—C10—H10B 108.2 H25B—C25—H25C 109.5
C1—N1—N2—C18 0.1 (2) C11—O3—C12—C17 −168.81 (19)
O5—S1—N3—C9 −7.8 (2) O3—C12—C13—C14 178.8 (2)
O4—S1—N3—C9 −137.76 (17) C17—C12—C13—C14 0.2 (3)
C19—S1—N3—C9 108.86 (18) C12—C13—C14—C15 −1.1 (4)
O5—S1—N3—C10 165.50 (16) C13—C14—C15—C16 1.0 (4)
O4—S1—N3—C10 35.56 (19) C14—C15—C16—C17 −0.1 (4)
C19—S1—N3—C10 −77.82 (18) C15—C16—C17—C12 −0.8 (3)
N2—N1—C1—O1 0.2 (2) C15—C16—C17—C18 178.9 (2)
N2—N1—C1—C2 179.1 (2) O3—C12—C17—C16 −178.0 (2)
C18—O1—C1—N1 −0.4 (2) C13—C12—C17—C16 0.8 (3)
C18—O1—C1—C2 −179.42 (19) O3—C12—C17—C18 2.3 (3)
N1—C1—C2—C3 −34.2 (3) C13—C12—C17—C18 −178.9 (2)
O1—C1—C2—C3 144.6 (2) N1—N2—C18—O1 −0.4 (2)
N1—C1—C2—C7 145.6 (2) N1—N2—C18—C17 −179.5 (2)
O1—C1—C2—C7 −35.6 (3) C1—O1—C18—N2 0.5 (2)
C7—C2—C3—C4 0.7 (3) C1—O1—C18—C17 179.69 (19)
C1—C2—C3—C4 −179.5 (2) C16—C17—C18—N2 23.2 (3)
C2—C3—C4—C5 −0.1 (4) C12—C17—C18—N2 −157.1 (2)
C3—C4—C5—C6 −0.8 (4) C16—C17—C18—O1 −155.8 (2)
C4—C5—C6—C7 1.1 (4) C12—C17—C18—O1 23.8 (3)
C8—O2—C7—C6 41.7 (3) O5—S1—C19—C24 10.7 (2)
C8—O2—C7—C2 −140.3 (2) O4—S1—C19—C24 139.72 (18)
C5—C6—C7—O2 177.4 (2) N3—S1—C19—C24 −105.10 (19)
C5—C6—C7—C2 −0.5 (3) O5—S1—C19—C20 −168.80 (18)
C3—C2—C7—O2 −178.5 (2) O4—S1—C19—C20 −39.8 (2)
C1—C2—C7—O2 1.7 (3) N3—S1—C19—C20 75.4 (2)
C3—C2—C7—C6 −0.4 (3) C24—C19—C20—C21 0.6 (3)
C1—C2—C7—C6 179.8 (2) S1—C19—C20—C21 −179.84 (19)
C7—O2—C8—C9 170.55 (19) C19—C20—C21—C22 −0.1 (4)
C10—N3—C9—C8 −78.4 (3) C20—C21—C22—C23 −0.4 (4)
S1—N3—C9—C8 94.9 (2) C20—C21—C22—C25 179.6 (2)
O2—C8—C9—N3 78.3 (2) C21—C22—C23—C24 0.3 (4)
C9—N3—C10—C11 −70.9 (3) C25—C22—C23—C24 −179.6 (2)
S1—N3—C10—C11 115.71 (19) C20—C19—C24—C23 −0.7 (3)
C12—O3—C11—C10 159.53 (19) S1—C19—C24—C23 179.78 (18)
N3—C10—C11—O3 87.7 (2) C22—C23—C24—C19 0.2 (4)
C11—O3—C12—C13 12.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10A···O4i 0.97 2.52 3.424 (3) 154
C20—H20···O4i 0.93 2.39 3.314 (3) 173
C5—H5···O4ii 0.93 2.51 3.253 (3) 137

Symmetry codes: (i) −x, −y+2, −z; (ii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2175).

References

  1. Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Du, D. M., Hua, W. T. & Jin, X. L. (2001). J. Mol. Struct.561, 145–152.
  3. Du, D. M., Hua, W. T., Wang, Z. M. & Yan, C. H. (2001). Heteroat. Chem.12, 480–484.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Silva, A. P. D., Fox, D. B., Huxley, A. J. M. & Moody, T. S. (2000). Coord. Chem. Rev.205, 41–57.
  7. Tong, A. J., Song, Y. S., Li, L. D., Hayashita, T., Teramae, N., Park, C. & Bartsch, R. A. (2000). Ana. Chim. Acta, 420, 57–64.
  8. Valeur, B. & Leray, I. (2000). Coord. Chem. Rev.205, 3–40.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025070/pv2175sup1.cif

e-65-o1792-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025070/pv2175Isup2.hkl

e-65-o1792-Isup2.hkl (228.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES