Abstract
The title compound, C13H13NO3, was synthesized by acetylation of ethyl 1H-indole-3-carboxylate. The aromatic ring system of the molecule is essentially planar, but the saturated ethyl group is also located within this plane and the overall r.m.s. deviation from planarity is only 0.034 Å. Pairs of C—H⋯O interactions connect molecules into chains along the diagonal of the unit cell. Molecules also form weakly connected dimers via π⋯π stacking interactions of the indole rings with centroid–centroid separations of 3.571 (1) Å. C—H⋯π interactions between methylene and methyl groups and the indole and benzene ring complete the directional intermolecular interactions found in the crystal structure.
Related literature
For the biological properties of tryptophan derivatives, see: Ma et al. (2001 ▶); Zhou et al. (2006 ▶); Zhao, Smith et al. (2002 ▶); Zhao, Liao & Cook (2002 ▶). For synthetic procedures towards tryptophan-like compounds, see: Ager & Laneman (2004 ▶); Amir-Heidari et al. (2007 ▶); Carlier et al. (2002 ▶); Hengartner et al. (1979 ▶); Moriya et al. (1980 ▶). For the synthesis of 2-acetamido-3-ethoxy-3-oxopropanoic acid, see: Hellmann et al. (1958 ▶). For NMR data for the title compound, see: Reimann et al. (1990 ▶).
Experimental
Crystal data
C13H13NO3
M r = 231.24
Triclinic,
a = 7.519 (1) Å
b = 8.479 (1) Å
c = 10.187 (2) Å
α = 97.38 (1)°
β = 95.78 (2)°
γ = 114.28 (1)°
V = 578.58 (15) Å3
Z = 2
Mo Kα radiation
μ = 0.10 mm−1
T = 296 K
0.51 × 0.41 × 0.20 mm
Data collection
Siemens P4 diffractometer
Absorption correction: multi-scan [XSCANS (Siemens, 1996 ▶) and XPREP (Siemens, 1994 ▶)] T min = 0.823, T max = 0.981
2536 measured reflections
2027 independent reflections
1696 reflections with I > 2σ(I)
R int = 0.019
3 standard reflections every 97 reflections intensity decay: <1%
Refinement
R[F 2 > 2σ(F 2)] = 0.042
wR(F 2) = 0.120
S = 1.09
2027 reflections
155 parameters
H-atom parameters constrained
Δρmax = 0.17 e Å−3
Δρmin = −0.18 e Å−3
Data collection: XSCANS (Siemens, 1996 ▶); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: XPREP (Siemens 1994 ▶) and SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025379/bh2233sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025379/bh2233Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C2—H2⋯O3i | 0.93 | 2.61 | 3.296 (2) | 131 |
| C5—H5⋯O1ii | 0.93 | 2.64 | 3.273 (2) | 125 |
| C12—H12B⋯Cg1iii | 0.96 | 2.95 | 3.618 (3) | 127 |
| C13—H13B⋯Cg2iii | 0.96 | 2.78 | 3.587 (3) | 142 |
Symmetry codes: (i)
; (ii)
; (iii)
. Cg1 is the centroid of the N1,C1,C6–C8 pyrrole ring and Cg2 is the centroid of the C1–C6 phenyl ring.
Acknowledgments
TAS acknowledges the College of Arts and Science at TSU for release time.
supplementary crystallographic information
Comment
Indole substituted at 3-position leads to variety of compounds that are precursors to biologically active important alkaloids. One of the most important compounds of this type is tryptophan, which possesses anticancerous, antimalarial, antiamoebic, and antihypertensive activities (Ma et al., 2001; Zhou et al., 2006; Zhao, Smith et al. 2002; Zhao, Liao, & Cook, 2002). α,β-Dehydroaminoacid esters (e.g.1, Fig. 1) are precursors to synthesizing tryptophan derivatives, which upon hydrogenation yield optically active tryptophan and its analogues (Ager & Laneman, 2004).
α,β-Dehydroamino acid esters were also synthesized using Erlenmeyer condensation (Amir-Heidari et al., 2007), Schmidt olefinations (Carlier et al., 2002), condensation of indole aldehyde with acetylamino malonic acid ester (Hengartner et al., 1979), and Knoevenagel-type condensation (Moriya et al. 1980). One such effort to synthesize hydroxyl dehydrotryptophan (3) from indoleester (1) using mono acid malonic ester (2) and aceticanhydride-pyridine mixture (Fig. 1) proved to be unsuccessful. The reaction resulted in 1H-indole-3-carboxylic acid-N-acetylethyl ester (4) instead. We rationalize that it is the electron withdrawing effect of the ester group which increases the acidity of the molecule. Consequently, in presence of a base, like pyridine, deprotonation and introduction of an acylium ion may occur. In this article we report the crystal structure of this compound.
The structure of the title compound is shown in Figure 2. The aromatic ring system of the molecule is essentially planar, but also the saturated ethyl group is located within this plane and the overall r.m.s. deviation from planarity is only 0.034 Å. Pairs of C—H···O interactions connect molecules into chains along the diagonal of the unit cell (Fig. 3). Molecules form weakly connected dimers viaπ···π stacking interactions of the indole rings with centroid to centroid distances of 3.571 (1) Å [symmetry operator for the second indole ring: (iii) 1 - x, 2 - y, 2 - z]. C—H···π interactions between methylene and methyl groups and the indole and benzene ring complete the range of intermolecular interactions [C12—H12B···Cg1iii = 2.95 Å, X—H···Cg1iii = 127°, X···Cg1iii = 3.618 (3) Å; C13—H13B···Cg2iii = 2.78 Å, X—H···Cg2iii = 142°, X···Cg2iii = 3.587 (3) Å; Cg1 and Cg2 are the centroids of the indole and the benzene rings, respectively].
Experimental
2-Acetamido-3-ethoxy-3-oxopropanoic acid (one of the starting materials) was prepared from acetylamino malonic acid diethylester following the process developed by Hellmann et al. (1958). The title compound was prepared as follows: to a mixture of 0.37 g (1.97 mmol) of the indole ester ethyl 1H-indole-3-carboxylate, 1.1 g (5.9 mmol) of 2-acetamido-3-ethoxy-3-oxopropanoic acid, and 4.54 ml of pyridine was added at 288 K (15 °C) over 15 minutes 1.6 ml of acetic anhydride. The reaction mixture turned yellow and was stirred at 333 K (60 °C) for 3 h. An additional 0.18 g (0.9 mmol) of ethyl acetamido malonate was added and stirring was continued for 22 h. Ice (10 ml) was added, and the mixture was stirred for 2 h and then diluted with 20 ml of water. The resulting solution was extracted with EtOAc (2 × 20 ml), the combined organic layer was dried with anhydrous Na2SO4 and the solvent was removed under reduced pressure. 0.4 g (99%) of 1H-indole-3-carboxylicacid-N-acetyl ethyl ester was isolated. 1HNMR CDCl3δ (p.p.m.): 8.70–8.50 (m,1H and 2H), 7.60–7.30 (m, 2H), 4.45 (q, J = 7 Hz, OCH2CH3), 2.70 (s, COCH3), 1.45 (t, J = 7 Hz, OCH2CH3). The NMR data agree with those reported previously (Reimann et al., 1990). Crystals suitable for X-ray structural analysis were obtained by recrystallization form ethanol in a refrigerator.
Refinement
All hydrogen atoms were added in calculated positions with a C—H bond distances of 0.97 (methylene), 0.93 (aromatic) and 0.96 Å (methyl). They were refined with isotropic displacement parameters Uiso of 1.5 (methyl) or 1.2 times Ueq (all others) of the adjacent carbon atom.
Figures
Fig. 1.
Synthesis of the title compound (4).
Fig. 2.
Thermal ellipsoid plot of the title compound with the atom labeling scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as capped sticks.
Fig. 3.
Packing view of the title compound showing C—H···O interactions (blue lines).
Crystal data
| C13H13NO3 | Z = 2 |
| Mr = 231.24 | F(000) = 244 |
| Triclinic, P1 | Dx = 1.327 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.519 (1) Å | Cell parameters from 23 reflections |
| b = 8.479 (1) Å | θ = 3.7–11.4° |
| c = 10.187 (2) Å | µ = 0.10 mm−1 |
| α = 97.38 (1)° | T = 296 K |
| β = 95.78 (2)° | Block, colourless |
| γ = 114.28 (1)° | 0.51 × 0.41 × 0.20 mm |
| V = 578.58 (15) Å3 |
Data collection
| Siemens P4 diffractometer | 1696 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.019 |
| graphite | θmax = 25.0°, θmin = 2.1° |
| 2θ/ω scans | h = −8→1 |
| Absorption correction: multi-scan [XSCANS (Siemens 1996) and XPREP (Siemens, 1994)] | k = −9→9 |
| Tmin = 0.823, Tmax = 0.981 | l = −12→12 |
| 2536 measured reflections | 3 standard reflections every 97 reflections |
| 2027 independent reflections | intensity decay: <1% |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
| wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0647P)2 + 0.0738P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.09 | (Δ/σ)max = 0.001 |
| 2027 reflections | Δρmax = 0.17 e Å−3 |
| 155 parameters | Δρmin = −0.18 e Å−3 |
| 0 restraints | Extinction correction: SHELXTL (Bruker, 2003; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 constraints | Extinction coefficient: 0.103 (12) |
| Primary atom site location: structure-invariant direct methods |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.3179 (2) | 0.9158 (2) | 0.76860 (15) | 0.0474 (4) | |
| C2 | 0.3276 (2) | 0.8319 (2) | 0.64495 (16) | 0.0560 (4) | |
| H2 | 0.3926 | 0.8952 | 0.5826 | 0.067* | |
| C3 | 0.2364 (3) | 0.6502 (2) | 0.61896 (18) | 0.0641 (5) | |
| H3 | 0.2402 | 0.5898 | 0.5371 | 0.077* | |
| C4 | 0.1394 (3) | 0.5554 (2) | 0.71141 (19) | 0.0658 (5) | |
| H4 | 0.0804 | 0.4330 | 0.6907 | 0.079* | |
| C5 | 0.1286 (3) | 0.6392 (2) | 0.83389 (17) | 0.0572 (4) | |
| H5 | 0.0629 | 0.5747 | 0.8955 | 0.069* | |
| C6 | 0.2186 (2) | 0.8227 (2) | 0.86285 (15) | 0.0477 (4) | |
| C7 | 0.2359 (2) | 0.9517 (2) | 0.97738 (15) | 0.0477 (4) | |
| C8 | 0.3421 (2) | 1.1130 (2) | 0.95024 (15) | 0.0491 (4) | |
| H8 | 0.3747 | 1.2189 | 1.0077 | 0.059* | |
| C9 | 0.1539 (2) | 0.9133 (2) | 1.10037 (16) | 0.0526 (4) | |
| C10 | 0.5038 (3) | 1.2371 (2) | 0.76197 (16) | 0.0563 (4) | |
| C11 | 0.5648 (3) | 1.4194 (3) | 0.8383 (2) | 0.0756 (6) | |
| H11A | 0.6392 | 1.4336 | 0.9248 | 0.113* | |
| H11B | 0.4491 | 1.4377 | 0.8497 | 0.113* | |
| H11C | 0.6452 | 1.5037 | 0.7894 | 0.113* | |
| C12 | 0.1351 (3) | 1.0333 (3) | 1.31867 (17) | 0.0613 (5) | |
| H12A | 0.1950 | 0.9683 | 1.3634 | 0.074* | |
| H12B | −0.0076 | 0.9667 | 1.3045 | 0.074* | |
| C13 | 0.1950 (3) | 1.2107 (3) | 1.40273 (18) | 0.0724 (5) | |
| H13A | 0.1508 | 1.1970 | 1.4875 | 0.109* | |
| H13B | 0.1361 | 1.2743 | 1.3572 | 0.109* | |
| H13C | 0.3366 | 1.2747 | 1.4175 | 0.109* | |
| N1 | 0.39555 (19) | 1.09788 (17) | 0.82406 (12) | 0.0489 (4) | |
| O1 | 0.0559 (3) | 0.76795 (18) | 1.11828 (14) | 0.0845 (5) | |
| O2 | 0.20161 (17) | 1.05915 (15) | 1.19112 (11) | 0.0559 (3) | |
| O3 | 0.5434 (2) | 1.20764 (19) | 0.65295 (13) | 0.0814 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0485 (8) | 0.0506 (9) | 0.0420 (8) | 0.0226 (7) | 0.0046 (6) | 0.0028 (6) |
| C2 | 0.0594 (10) | 0.0612 (10) | 0.0452 (9) | 0.0262 (8) | 0.0100 (7) | 0.0006 (7) |
| C3 | 0.0707 (11) | 0.0617 (11) | 0.0531 (10) | 0.0282 (9) | 0.0083 (8) | −0.0092 (8) |
| C4 | 0.0744 (11) | 0.0493 (10) | 0.0660 (11) | 0.0245 (9) | 0.0072 (9) | −0.0049 (8) |
| C5 | 0.0631 (10) | 0.0494 (9) | 0.0552 (10) | 0.0216 (8) | 0.0084 (8) | 0.0070 (7) |
| C6 | 0.0492 (8) | 0.0497 (8) | 0.0437 (8) | 0.0231 (7) | 0.0043 (6) | 0.0036 (7) |
| C7 | 0.0521 (8) | 0.0502 (9) | 0.0419 (8) | 0.0239 (7) | 0.0077 (6) | 0.0062 (7) |
| C8 | 0.0569 (9) | 0.0503 (9) | 0.0405 (8) | 0.0245 (7) | 0.0102 (6) | 0.0032 (6) |
| C9 | 0.0617 (9) | 0.0541 (10) | 0.0467 (9) | 0.0283 (8) | 0.0122 (7) | 0.0108 (7) |
| C10 | 0.0656 (10) | 0.0570 (10) | 0.0478 (9) | 0.0254 (8) | 0.0155 (7) | 0.0131 (7) |
| C11 | 0.0980 (15) | 0.0525 (11) | 0.0726 (12) | 0.0247 (10) | 0.0284 (11) | 0.0146 (9) |
| C12 | 0.0718 (11) | 0.0789 (12) | 0.0442 (9) | 0.0395 (10) | 0.0208 (8) | 0.0160 (8) |
| C13 | 0.0812 (13) | 0.0925 (14) | 0.0491 (10) | 0.0451 (11) | 0.0156 (9) | 0.0023 (9) |
| N1 | 0.0562 (8) | 0.0484 (7) | 0.0406 (7) | 0.0215 (6) | 0.0105 (5) | 0.0044 (5) |
| O1 | 0.1286 (12) | 0.0546 (8) | 0.0692 (9) | 0.0304 (8) | 0.0424 (8) | 0.0197 (6) |
| O2 | 0.0660 (7) | 0.0586 (7) | 0.0430 (6) | 0.0256 (6) | 0.0172 (5) | 0.0069 (5) |
| O3 | 0.1158 (11) | 0.0731 (9) | 0.0556 (8) | 0.0346 (8) | 0.0377 (7) | 0.0162 (7) |
Geometric parameters (Å, °)
| C1—C2 | 1.389 (2) | C9—O1 | 1.197 (2) |
| C1—C6 | 1.399 (2) | C9—O2 | 1.3367 (19) |
| C1—N1 | 1.4186 (19) | C10—O3 | 1.201 (2) |
| C2—C3 | 1.379 (2) | C10—N1 | 1.400 (2) |
| C2—H2 | 0.9300 | C10—C11 | 1.497 (3) |
| C3—C4 | 1.384 (3) | C11—H11A | 0.9600 |
| C3—H3 | 0.9300 | C11—H11B | 0.9600 |
| C4—C5 | 1.381 (2) | C11—H11C | 0.9600 |
| C4—H4 | 0.9300 | C12—O2 | 1.449 (2) |
| C5—C6 | 1.393 (2) | C12—C13 | 1.494 (3) |
| C5—H5 | 0.9300 | C12—H12A | 0.9700 |
| C6—C7 | 1.449 (2) | C12—H12B | 0.9700 |
| C7—C8 | 1.352 (2) | C13—H13A | 0.9600 |
| C7—C9 | 1.467 (2) | C13—H13B | 0.9600 |
| C8—N1 | 1.391 (2) | C13—H13C | 0.9600 |
| C8—H8 | 0.9300 | ||
| C2—C1—C6 | 122.32 (15) | O2—C9—C7 | 112.43 (14) |
| C2—C1—N1 | 130.20 (15) | O3—C10—N1 | 120.26 (16) |
| C6—C1—N1 | 107.48 (13) | O3—C10—C11 | 123.11 (16) |
| C3—C2—C1 | 116.89 (17) | N1—C10—C11 | 116.63 (15) |
| C3—C2—H2 | 121.6 | C10—C11—H11A | 109.5 |
| C1—C2—H2 | 121.6 | C10—C11—H11B | 109.5 |
| C2—C3—C4 | 121.75 (17) | H11A—C11—H11B | 109.5 |
| C2—C3—H3 | 119.1 | C10—C11—H11C | 109.5 |
| C4—C3—H3 | 119.1 | H11A—C11—H11C | 109.5 |
| C5—C4—C3 | 121.27 (17) | H11B—C11—H11C | 109.5 |
| C5—C4—H4 | 119.4 | O2—C12—C13 | 107.88 (15) |
| C3—C4—H4 | 119.4 | O2—C12—H12A | 110.1 |
| C4—C5—C6 | 118.33 (17) | C13—C12—H12A | 110.1 |
| C4—C5—H5 | 120.8 | O2—C12—H12B | 110.1 |
| C6—C5—H5 | 120.8 | C13—C12—H12B | 110.1 |
| C5—C6—C1 | 119.44 (14) | H12A—C12—H12B | 108.4 |
| C5—C6—C7 | 133.47 (15) | C12—C13—H13A | 109.5 |
| C1—C6—C7 | 107.10 (14) | C12—C13—H13B | 109.5 |
| C8—C7—C6 | 107.50 (14) | H13A—C13—H13B | 109.5 |
| C8—C7—C9 | 126.52 (15) | C12—C13—H13C | 109.5 |
| C6—C7—C9 | 125.98 (15) | H13A—C13—H13C | 109.5 |
| C7—C8—N1 | 110.33 (14) | H13B—C13—H13C | 109.5 |
| C7—C8—H8 | 124.8 | C8—N1—C10 | 126.27 (14) |
| N1—C8—H8 | 124.8 | C8—N1—C1 | 107.60 (13) |
| O1—C9—O2 | 123.51 (15) | C10—N1—C1 | 126.12 (13) |
| O1—C9—C7 | 124.06 (16) | C9—O2—C12 | 116.25 (13) |
| C6—C1—C2—C3 | −0.9 (2) | C8—C7—C9—O1 | 177.82 (17) |
| N1—C1—C2—C3 | −179.95 (15) | C6—C7—C9—O1 | −2.6 (3) |
| C1—C2—C3—C4 | 0.1 (3) | C8—C7—C9—O2 | −2.5 (2) |
| C2—C3—C4—C5 | 0.5 (3) | C6—C7—C9—O2 | 177.09 (13) |
| C3—C4—C5—C6 | −0.2 (3) | C7—C8—N1—C10 | 179.14 (15) |
| C4—C5—C6—C1 | −0.6 (2) | C7—C8—N1—C1 | 0.04 (17) |
| C4—C5—C6—C7 | 179.54 (17) | O3—C10—N1—C8 | 179.02 (16) |
| C2—C1—C6—C5 | 1.2 (2) | C11—C10—N1—C8 | −1.0 (3) |
| N1—C1—C6—C5 | −179.57 (13) | O3—C10—N1—C1 | −2.1 (3) |
| C2—C1—C6—C7 | −178.95 (14) | C11—C10—N1—C1 | 177.96 (15) |
| N1—C1—C6—C7 | 0.31 (16) | C2—C1—N1—C8 | 178.95 (16) |
| C5—C6—C7—C8 | 179.58 (17) | C6—C1—N1—C8 | −0.23 (16) |
| C1—C6—C7—C8 | −0.29 (17) | C2—C1—N1—C10 | −0.1 (3) |
| C5—C6—C7—C9 | 0.0 (3) | C6—C1—N1—C10 | −179.32 (15) |
| C1—C6—C7—C9 | −179.90 (14) | O1—C9—O2—C12 | 2.7 (2) |
| C6—C7—C8—N1 | 0.15 (18) | C7—C9—O2—C12 | −177.03 (13) |
| C9—C7—C8—N1 | 179.76 (14) | C13—C12—O2—C9 | −177.54 (14) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C2—H2···O3i | 0.93 | 2.61 | 3.296 (2) | 131 |
| C5—H5···O1ii | 0.93 | 2.64 | 3.273 (2) | 125 |
| C12—H12B···Cg1iii | 0.96 | 2.95 | 3.618 (3) | 127 |
| C13—H13B···Cg2iii | 0.96 | 2.78 | 3.587 (3) | 142 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+1, −z+2; (iii) −x, −y+2, −z+2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2233).
References
- Ager, D. J. & Laneman, S. (2004). Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, edited by H. U. Blaser & E. Schmidt, p. 30. Weinheim: WILEY-VCH Verlag GmbH & Co KGaA.
- Amir-Heidari, B., Thirlway, J. & Micklefield, J. (2007). Org. Lett.9, 1513–1516. [DOI] [PubMed]
- Carlier, P. R., Lam, P. C.-H. & Wong, D. M. (2002). J. Org. Chem.67, 6256–6259. [DOI] [PubMed]
- Hellmann, H., Teichmann, K. & Lingens, F. (1958). Chem. Ber.91, 2427–2431.
- Hengartner, U., Valentine, D. Jr, Johnson, K. K., Larscheid, M. E., Pigott, F., Scheidl, F., Scott, J. W., Sun, R. C., Townsend, J. M. & Williams, T. H. (1979). J. Org. Chem.44, 3741–3747.
- Ma, C., Liu, X., Li, X., Flippen-Anderson, J., Yu, S. & Cook, J. M. (2001). J. Org. Chem.66, 4525–4542. [DOI] [PubMed]
- Moriya, T., Hagio, K. & Yoneda, N. (1980). Chem. Pharm. Bull.28, 1711–1721.
- Reimann, E., Hassler, T. & Lotter, H. (1990). Arch. Pharm.323, 255–258.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Siemens (1994). XPREP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zhao, S., Liao, X. & Cook, J. M. (2002). Org. Lett.4, 687–690. [DOI] [PubMed]
- Zhao, S., Smith, K. S., Deveau, A. M., Dieckhaus, C. M., Johnson, M. A., Macdonald, T. L. & Cook, J. M. (2002). J. Med. Chem.45, 1559–1562. [DOI] [PubMed]
- Zhou, H., Liao, X., Yin, W., Ma, J. & Cook, J. M. (2006). J. Org. Chem.71, 251–259. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025379/bh2233sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025379/bh2233Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



