Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 29;65(Pt 8):o2040–o2041. doi: 10.1107/S1600536809029419

2-Phenyl-5-(trifluoro­meth­yl)pyrazol-3(2H)-one

Hugo Gallardo a,*, Edivandro Girotto a, Adailton J Bortoluzzi a, Geovana G Terra a
PMCID: PMC2977152  PMID: 21583705

Abstract

The title compound, C10H7F3N2O, is an analogue of pyrazolone derivatives with potential analgesic and anti-inflammatory properties. Its mol­ecular structure consists of phenyl and pyrazol-3(2H)-one units with a dihedral angle between the mean planes of the rings of 33.0 (1)°. The crystal structure is stabilized by an inter­molecular hydrogen bond between the N—H group and the carbonyl O atom of the pyrazol-3(2H)-one ring which links the mol­ecules into supra­molecular C(5) chains along [001] and by weak π–π stacking inter­actions between the phenyl rings [centroid-centroid distance = 3.881 (2) Å]. The F atoms are disordered over two positions with refined site occupancies of 0.768(11) and 0.232(11).

Related literature

For the analgesic properties of pyrazolones, see: Mehlisch (1983); Schnitzer (2003). For the biological activity of some pyrazolone derivatives, see: Pavlov et al. (1998). For the pharmacological properties of pyrazolone deriavtives, see: Kees et al. (1996). For related structures, see: Belmar et al. (2006a ,b ); Pérez et al. (2005). For metal complexes, see: Hyun-Shin et al. (2008); Gallardo et al. (2004); Meyer et al. (1998). For the synthesis of pyrazolones, see: Nakagawa et al. (2006); Belmar et al. (2001); Bartulín et al. (1994). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-65-o2040-scheme1.jpg

Experimental

Crystal data

  • C10H7F3N2O

  • M r = 228.18

  • Monoclinic, Inline graphic

  • a = 5.8409 (5) Å

  • b = 15.2454 (14) Å

  • c = 11.2291 (17) Å

  • β = 92.403 (9)°

  • V = 999.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.46 × 0.40 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2262 measured reflections

  • 2157 independent reflections

  • 1141 reflections with I > 2σ(I)

  • R int = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.188

  • S = 1.03

  • 2157 reflections

  • 173 parameters

  • 81 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029419/bx2225sup1.cif

e-65-o2040-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029419/bx2225Isup2.hkl

e-65-o2040-Isup2.hkl (103.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.88 1.89 2.667 (3) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC), the Instituto Nacional de Ciência e Tecnologia (INCT-cat) and the Financiadora de Estudos e Projetos (FINEP) for financial assistance.

supplementary crystallographic information

Comment

The pyrazolone analgesics (such as phenylbutazone) have effects similar to those of aspirin. They were commonly used to treat rheumatoid arthritis and has been the focus of medicinal chemists for over last 100 years because of the outstanding pharmacological properties shown by several of its derivatives (Kees et al., 1996). The interest in such compounds, pyrazolone derivative, arises from the fact that the incorporation of heteroatoms can result an ancillary ligand to study their photoactive lanthanide complexes. These compounds possess several sites for substitution, allowing for a systematic analysis of their effects on the photo optical properties. Particulary the luminescence properties of the Eu and Tb complexes.

The molecular structure of (I) consists of a phenyl group bonded to 2-N of the dihydropyrazole heterocyclic ring (Fig. 1). These rings are twisted with respect to each other and the dihedral angle between the mean plane is 33.0 (1)°.The molecules are linked into chains by one intermolecular N—H···O hydrogen bond. Atoms N2 in the molecules at (x,y,z) acts as hydrogen bonds donor vía atom H2 to atoms O1 at (-x, 3/2+y, -1-z) so generating by translation one C(5) chains running parallel to [001] direction (Bernstein et al., 1995), (Fig. 2, Table 1) and the crystal structure is reinforced by a weak face-to-face π-π stacking interactions between phenyl rings with the centroid-centroid distance of 3.881 (2) Å.

Refinement

All non-H atoms were refined with anisotropic displacement parameters. HAr atoms were placed at their idealized positions with distances of 0.93 Å and Ueq fixed at 1.2 Uiso of the preceding atom. H atom attached to N atom was located from Fourier difference map and treated with riding model. Fluorine atoms are disordered over two alternative positions with refined site occupancies of 0.768 (11) and 0.232 (11).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with labeling scheme. Displacement ellipsoids are shown at the 40% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of a C(5) chain pattern. [Symmetry code: (i) x,-y+3/2,z-1/2]

Crystal data

C10H7F3N2O F(000) = 464
Mr = 228.18 Dx = 1.517 Mg m3
Monoclinic, P21/c Melting point = 464–465 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 5.8409 (5) Å Cell parameters from 25 reflections
b = 15.2454 (14) Å θ = 3.2–13.8°
c = 11.2291 (17) Å µ = 0.14 mm1
β = 92.403 (9)° T = 293 K
V = 999.0 (2) Å3 Irregular, colourless
Z = 4 0.46 × 0.40 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.024
Radiation source: fine-focus sealed tube θmax = 27.0°, θmin = 2.3°
graphite h = −7→7
ω–2θ scans k = −19→0
2262 measured reflections l = −14→0
2157 independent reflections 3 standard reflections every 200 reflections
1141 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0843P)2 + 0.3445P] where P = (Fo2 + 2Fc2)/3
2157 reflections (Δ/σ)max = 0.001
173 parameters Δρmax = 0.30 e Å3
81 restraints Δρmin = −0.32 e Å3

Special details

Experimental. The title compound was synthesized by the condensation of ethyl 4,4,4-trifluoroacetoacetate (5.0?g, 27.2?mmol) in acetic acid (50?ml) with phenylhydrazine (2.9?g, 27.2?mmol) which was added drop wise, with stirring for 3?h. The solvent was removed by evaporation; resulting crude solid was extracted with AcOEt. The organic layer was washed with saturated aqueous NaHCO3 and water, then brine, and evaporation the solvent. The compound, obtained as colorless single crystals, was recrystallized using ethylacetate and n-hexane (2:1) and was suitable for X-ray structure determination. Yield 76% mp: 191–192 °C, lit. 195–196 °C (Nakagawa et al., 2006). 1H-NMR (DMSO, 400?MHz, d, p.p.m.) 12,42 (1H, s), 7,70 (2H, d, J = 8?Hz), 7,49 (2H, t, J = 8?Hz), 7,36 (1H, t, J = 8?Hz), 5,92 (1H, s). 13C-NMR (DMSO, 400?MHz, d, p.p.m.) 153,68 (C5), 140,21 (C3), 13,70 (C6), 129,07 (C10; C8), 127,18 (C9), 122,25 (C11; C7), 119,98 (C12), 85,53 (C4).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.2789 (5) 0.78258 (17) 0.98039 (19) 0.0486 (7)
N2 0.3999 (5) 0.73266 (19) 0.90418 (19) 0.0534 (7)
H2 0.3729 0.7405 0.8270 0.064*
C3 0.5425 (6) 0.6863 (2) 0.9721 (3) 0.0535 (8)
C4 0.5221 (6) 0.7045 (2) 1.0923 (3) 0.0567 (9)
H4 0.6052 0.6801 1.1566 0.068*
C5 0.3528 (6) 0.7661 (2) 1.0950 (2) 0.0523 (8)
C6 0.1101 (5) 0.8436 (2) 0.9370 (2) 0.0471 (8)
C7 0.1383 (6) 0.8843 (2) 0.8282 (2) 0.0582 (9)
H7 0.2671 0.8730 0.7847 0.070*
C8 −0.0280 (7) 0.9420 (3) 0.7854 (3) 0.0730 (11)
H8 −0.0111 0.9694 0.7123 0.088*
C9 −0.2193 (7) 0.9594 (3) 0.8499 (4) 0.0745 (11)
H9 −0.3304 0.9983 0.8204 0.089*
C10 −0.2439 (6) 0.9189 (3) 0.9575 (3) 0.0691 (10)
H10 −0.3715 0.9309 1.0016 0.083*
C11 −0.0805 (6) 0.8604 (2) 1.0010 (3) 0.0583 (9)
H11 −0.0994 0.8323 1.0735 0.070*
C12 0.7009 (8) 0.6240 (3) 0.9172 (3) 0.0712 (11)
F1 0.7641 (13) 0.6502 (4) 0.8115 (4) 0.118 (3) 0.768 (11)
F1' 0.617 (3) 0.5831 (17) 0.826 (2) 0.129 (8) 0.232 (11)
F2 0.8938 (12) 0.6159 (7) 0.9809 (5) 0.129 (3) 0.768 (11)
F2' 0.884 (4) 0.6549 (11) 0.882 (3) 0.141 (9) 0.232 (11)
F3 0.6134 (13) 0.5470 (4) 0.9008 (9) 0.144 (3) 0.768 (11)
F3' 0.760 (5) 0.5604 (14) 0.9906 (13) 0.104 (6) 0.232 (11)
O1 0.2602 (4) 0.81041 (16) 1.18269 (16) 0.0686 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0599 (16) 0.0617 (17) 0.0244 (11) 0.0019 (14) 0.0042 (10) −0.0008 (11)
N2 0.0666 (17) 0.0714 (18) 0.0225 (11) 0.0001 (14) 0.0044 (11) −0.0034 (11)
C3 0.062 (2) 0.062 (2) 0.0374 (16) 0.0015 (17) 0.0057 (15) 0.0011 (15)
C4 0.068 (2) 0.068 (2) 0.0336 (15) 0.0072 (19) 0.0006 (14) 0.0062 (15)
C5 0.070 (2) 0.063 (2) 0.0242 (14) −0.0023 (18) 0.0033 (13) 0.0040 (13)
C6 0.0554 (19) 0.0511 (18) 0.0343 (15) −0.0052 (16) −0.0026 (13) −0.0028 (13)
C7 0.072 (2) 0.067 (2) 0.0360 (15) −0.0042 (19) 0.0003 (15) 0.0052 (15)
C8 0.093 (3) 0.068 (3) 0.056 (2) −0.011 (2) −0.015 (2) 0.0164 (18)
C9 0.075 (3) 0.063 (2) 0.083 (3) 0.001 (2) −0.022 (2) 0.005 (2)
C10 0.059 (2) 0.073 (2) 0.075 (2) 0.001 (2) −0.0004 (18) −0.004 (2)
C11 0.062 (2) 0.066 (2) 0.0470 (18) −0.0056 (19) 0.0017 (16) 0.0011 (16)
C12 0.078 (3) 0.083 (3) 0.054 (2) 0.010 (2) 0.018 (2) −0.003 (2)
F1 0.142 (6) 0.152 (5) 0.064 (3) 0.052 (4) 0.050 (3) 0.008 (3)
F1' 0.083 (11) 0.172 (19) 0.129 (14) 0.035 (11) −0.038 (10) −0.112 (12)
F2 0.100 (4) 0.187 (7) 0.099 (4) 0.068 (4) −0.016 (3) −0.030 (4)
F2' 0.105 (13) 0.127 (13) 0.20 (2) −0.035 (10) 0.083 (14) −0.071 (15)
F3 0.164 (6) 0.077 (3) 0.197 (8) −0.008 (3) 0.088 (6) −0.041 (4)
F3' 0.133 (15) 0.104 (11) 0.074 (8) 0.059 (10) −0.003 (9) −0.004 (8)
O1 0.0983 (19) 0.0804 (17) 0.0276 (11) 0.0248 (15) 0.0078 (11) −0.0044 (10)

Geometric parameters (Å, °)

N1—C5 1.363 (3) C8—C9 1.382 (6)
N1—N2 1.365 (3) C8—H8 0.9300
N1—C6 1.426 (4) C9—C10 1.371 (5)
N2—C3 1.312 (4) C9—H9 0.9300
N2—H2 0.8825 C10—C11 1.381 (5)
C3—C4 1.388 (4) C10—H10 0.9300
C3—C12 1.479 (5) C11—H11 0.9300
C4—C5 1.366 (5) C12—F2' 1.247 (14)
C4—H4 0.9300 C12—F1' 1.279 (13)
C5—O1 1.327 (4) C12—F3 1.291 (7)
C6—C11 1.374 (4) C12—F3' 1.309 (13)
C6—C7 1.387 (4) C12—F2 1.315 (6)
C7—C8 1.381 (5) C12—F1 1.320 (5)
C7—H7 0.9300
C5—N1—N2 109.7 (3) C9—C8—H8 119.6
C5—N1—C6 129.0 (2) C10—C9—C8 119.5 (4)
N2—N1—C6 121.2 (2) C10—C9—H9 120.3
C3—N2—N1 105.6 (2) C8—C9—H9 120.3
C3—N2—H2 136.6 C9—C10—C11 120.4 (4)
N1—N2—H2 117.7 C9—C10—H10 119.8
N2—C3—C4 112.3 (3) C11—C10—H10 119.8
N2—C3—C12 119.8 (3) C6—C11—C10 119.9 (3)
C4—C3—C12 127.9 (3) C6—C11—H11 120.1
C5—C4—C3 104.5 (3) C10—C11—H11 120.1
C5—C4—H4 127.7 F2'—C12—F1' 103.5 (9)
C3—C4—H4 127.7 F2'—C12—F3' 105.9 (9)
O1—C5—N1 119.0 (3) F1'—C12—F3' 103.0 (9)
O1—C5—C4 133.2 (3) F3—C12—F2 108.5 (5)
N1—C5—C4 107.9 (3) F3—C12—F1 105.8 (5)
C11—C6—C7 120.4 (3) F2—C12—F1 104.6 (5)
C11—C6—N1 120.4 (3) F2'—C12—C3 116.7 (8)
C7—C6—N1 119.2 (3) F1'—C12—C3 114.9 (7)
C8—C7—C6 118.9 (3) F3—C12—C3 113.1 (4)
C8—C7—H7 120.5 F3'—C12—C3 111.6 (7)
C6—C7—H7 120.5 F2—C12—C3 111.8 (4)
C7—C8—C9 120.8 (3) F1—C12—C3 112.5 (4)
C7—C8—H8 119.6
C5—N1—N2—C3 0.6 (4) C6—C7—C8—C9 0.3 (5)
C6—N1—N2—C3 178.3 (3) C7—C8—C9—C10 0.0 (6)
N1—N2—C3—C4 −0.6 (4) C8—C9—C10—C11 −0.7 (6)
N1—N2—C3—C12 179.7 (3) C7—C6—C11—C10 −0.7 (5)
N2—C3—C4—C5 0.4 (4) N1—C6—C11—C10 −179.4 (3)
C12—C3—C4—C5 180.0 (4) C9—C10—C11—C6 1.1 (5)
N2—N1—C5—O1 178.1 (3) N2—C3—C12—F2' 84.0 (18)
C6—N1—C5—O1 0.6 (5) C4—C3—C12—F2' −95.6 (18)
N2—N1—C5—C4 −0.4 (4) N2—C3—C12—F1' −37.5 (17)
C6—N1—C5—C4 −177.9 (3) C4—C3—C12—F1' 143.0 (17)
C3—C4—C5—O1 −178.1 (4) N2—C3—C12—F3 −88.1 (7)
C3—C4—C5—N1 0.0 (4) C4—C3—C12—F3 92.3 (7)
C5—N1—C6—C11 −35.3 (5) N2—C3—C12—F3' −154.2 (17)
N2—N1—C6—C11 147.5 (3) C4—C3—C12—F3' 26.3 (18)
C5—N1—C6—C7 146.0 (3) N2—C3—C12—F2 149.0 (7)
N2—N1—C6—C7 −31.2 (4) C4—C3—C12—F2 −30.5 (9)
C11—C6—C7—C8 0.0 (5) N2—C3—C12—F1 31.7 (7)
N1—C6—C7—C8 178.7 (3) C4—C3—C12—F1 −147.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1i 0.88 1.89 2.667 (3) 146

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2225).

References

  1. Bartulín, J., Belmar, J., Gallardo, H. & León, G. (1994). J. Heterocycl. Chem.31, 561–563.
  2. Belmar, J., Alderete, J., Zuñiga, C., Jimenez, C., Jimenez, V., Núñez, H., Grandy, R. & Yori, A. (2001). Bol. Soc. Chil. Quim.46, 459–470.
  3. Belmar, J., Jiménez, C., Ortiz, L., Garland, M. T. & Baggio, R. (2006a). Acta Cryst. C62, o76–o78. [DOI] [PubMed]
  4. Belmar, J., Jiménez, C., Ruiz-Pérez, C., Delgado, F. S. & Baggio, R. (2006b). Acta Cryst. C62, o599–o601. [DOI] [PubMed]
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  6. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  7. Gallardo, H., Meyer, E., Bortoluzzi, A. J., Molin, F. & Mangrich, A. S. (2004). Inorg. Chim. Acta, 357, 505–512.
  8. Hyun-Shin, L., Ji-Hyun, S., Moon, K. C., Young-Kwan, K. & Yunkyoung, H. (2008). J. Phys. Chem. Solids, 69, 1305–1309.
  9. Kees, K. L., Fitzgerald, J. J. Jr, Steiner, K. E., Mattes, J. F., Mihan, B., Tosi, T., Mondoro, D. & McCalebr, M. L. (1996). J. Med. Chem.39, 3920–3928. [DOI] [PubMed]
  10. Mehlisch, D. R. (1983). Am. J. Med.75, 47–52. [DOI] [PubMed]
  11. Meyer, E., Zucco, C. & Gallardo, H. (1998). J. Mater. Chem.8, 1351–1354.
  12. Nakagawa, H., Ohyama, R., Kimata, A., Suzuki, T. & Miyata, N. (2006). Bioorg. Med. Chem. Lett.16, 5939–5942. [DOI] [PubMed]
  13. Pavlov, P. T., Goleneva, A. F., Lesnov, A. E. & Prokhorova, T. S. (1998). Pharm. Chem. J.32, 370–372.
  14. Pérez, F. R., Belmar, J., Jiménez, C., Moreno, Y., Hermosilla, P. & Baggio, R. (2005). Acta Cryst. C61, m318–m320. [DOI] [PubMed]
  15. Schnitzer, T. (2003). Eur. J. Anaesthesiol. Suppl.28, 13–7. [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (1996). HELENA University of Utrecht, The Netherlands.
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029419/bx2225sup1.cif

e-65-o2040-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029419/bx2225Isup2.hkl

e-65-o2040-Isup2.hkl (103.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES