Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 22;65(Pt 8):o1959. doi: 10.1107/S1600536809028141

13-Ethoxy­carbonyl-16-(1-methyl­ethyl)-17,19-dinoratis-15-ene-4,14-dicarboxylic acid monohydrate: a new derivative of maleopimaric acid

Meng Zhang a, Xiao-xin Guo a, Yong-hong Zhou a,*, Hong-jun Liu a
PMCID: PMC2977153  PMID: 21583637

Abstract

The title compound, C26H38O6·H2O, is a mono-ester of a derivative of maleopimaric acid, an abietic-type acid. The two fused and unbridged cyclo­hexane rings adopt approximate chair conformations while the three other three six-membered rings have boat conformations.

Related literature

Abietic type resin acid, the major component of gum rosin, is a high quality biomass resource for the development of new chiral drugs, see: McCoy (2000); Schweizer et al. (2003). For the use of abietic acid and its derivatives in the design and synthesis of industrially and physiologically important products, see: Savluchinske-Feio et al. (2007). For the structures of other maleopimaric acid derivatives, see: Li et al. (2005); Pan et al. (2006); Rao et al. (2006).graphic file with name e-65-o1959-scheme1.jpg

Experimental

Crystal data

  • C26H38O6·H2O

  • M r = 464.58

  • Orthorhombic, Inline graphic

  • a = 7.3406 (14) Å

  • b = 17.901 (4) Å

  • c = 19.681 (4) Å

  • V = 2586.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.26 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.98, T max = 0.98

  • 14084 measured reflections

  • 2892 independent reflections

  • 2318 reflections with I > 2σ(I)

  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.113

  • S = 1.08

  • 2892 reflections

  • 303 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028141/bh2234sup1.cif

e-65-o1959-sup1.cif (25.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028141/bh2234Isup2.hkl

e-65-o1959-Isup2.hkl (142KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the President of the Chinese Academy of Forestry Foundation (CAFYBB2008009).

supplementary crystallographic information

Comment

Rosin, a versatile natural resin, possesses a rare combination of many desirable properties and has consequently found innumerable industrial uses in a modified form or in conjunction with other natural or synthetic resins. Abietic type resin acid is the major component of gum rosin, including abietic acid, neoabietic acid, levo-pimaric acid, palustric acid, and is a high quality biomass resource in developing chiral new drug (McCoy, 2000; Schweizer et al., 2003).

Abietic acid and its derivatives are readily available hydrophenanthrene compounds which become useful starting materials for the design and synthesis of industrially and physiologically important productions (Savluchinske-Feio et al., 2007). The crystal structures of other derivatives of maleopimaric acid have already been published (Rao et al., 2006; Li et al., 2005; Pan et al., 2006).

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit consists of two molecules, viz. maleopimaric ester derivative and one lattice water molecule. The cyclohexane rings C2···C5/C10/C11 and C1/C2/C11···C14 have typical chair forms. The cyclohexane ring C5···C10 has a slightly distorted boat conformation; the other two six-membered rings adopt boat conformations. The configuration about the C17C18 bond is Z (Fig. 1), with the H atom and the isopropyl group cis with respect to each other. The bond lengths and angles have normal values.

In the crystal structure, the molecules are linked (Fig. 2) by O—H···O and C—H···O intermolecular hydrogen bonds.

Experimental

Abietic acid (30.2 g), acetic acid (20 ml), and maleic acid ethyl ester (14.4 g) were put into a 100-ml three-necked flask and magnetically stirred; the mixture was stirred for 25 min. The solution was then put into 5 ml of glacial acetic acid and cooled, washed with hot water (10 ml), dried (MgSO4), and concentrated to dryness. Recrystallization from ethanol (95%) afforded the adduct (33.9 g, 73%).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and O—H distances of 0.85 Å, with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The packing of the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C26H38O6·H2O Dx = 1.193 Mg m3
Mr = 464.58 Melting point: 412 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2351 reflections
a = 7.3406 (14) Å θ = 2.4–23.1°
b = 17.901 (4) Å µ = 0.09 mm1
c = 19.681 (4) Å T = 291 K
V = 2586.2 (9) Å3 Aciculae, colorless
Z = 4 0.26 × 0.22 × 0.20 mm
F(000) = 1008

Data collection

Bruker SMART APEX CCD diffractometer 2892 independent reflections
Radiation source: sealed tube 2318 reflections with I > 2σ(I)
graphite Rint = 0.076
φ and ω scans θmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −8→9
Tmin = 0.98, Tmax = 0.98 k = −21→22
14084 measured reflections l = −11→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.04P)2 + 0.66P] where P = (Fo2 + 2Fc2)/3
2892 reflections (Δ/σ)max < 0.001
303 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.22 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1062 (5) 0.27241 (19) 0.17771 (18) 0.0339 (8)
C2 0.1205 (5) 0.18852 (19) 0.16317 (18) 0.0321 (8)
H2 0.0801 0.1643 0.2052 0.039*
C3 0.3180 (5) 0.1612 (2) 0.1530 (2) 0.0386 (9)
H3A 0.3605 0.1755 0.1082 0.046*
H3B 0.3968 0.1845 0.1864 0.046*
C4 0.3272 (5) 0.0766 (2) 0.1604 (2) 0.0377 (9)
H4A 0.3005 0.0636 0.2072 0.045*
H4B 0.4505 0.0603 0.1507 0.045*
C5 0.1958 (5) 0.03398 (19) 0.11385 (18) 0.0330 (8)
C6 0.1724 (6) −0.0481 (2) 0.14105 (18) 0.0378 (9)
H6 0.1139 −0.0455 0.1858 0.045*
C7 0.0419 (5) −0.0908 (2) 0.0922 (2) 0.0382 (9)
H7 −0.0692 −0.1011 0.1182 0.046*
C8 −0.0146 (5) −0.0396 (2) 0.03338 (19) 0.0406 (9)
H8 −0.0907 −0.0669 0.0009 0.049*
C9 −0.1211 (5) 0.0256 (2) 0.06435 (19) 0.0416 (9)
H9A −0.2277 0.0066 0.0878 0.050*
H9B −0.1621 0.0587 0.0284 0.050*
C10 0.0003 (5) 0.07016 (19) 0.11538 (19) 0.0339 (8)
H10 −0.0491 0.0597 0.1607 0.041*
C11 −0.0061 (5) 0.1561 (2) 0.10698 (18) 0.0360 (8)
C12 −0.2015 (5) 0.1820 (2) 0.1218 (2) 0.0411 (9)
H12A −0.2443 0.1576 0.1629 0.049*
H12B −0.2799 0.1665 0.0848 0.049*
C13 −0.2173 (5) 0.2672 (2) 0.1309 (2) 0.0426 (9)
H13A −0.1819 0.2918 0.0891 0.051*
H13B −0.3430 0.2802 0.1404 0.051*
C14 −0.0966 (5) 0.2947 (2) 0.1888 (2) 0.0394 (9)
H14A −0.1394 0.2737 0.2313 0.047*
H14B −0.1057 0.3487 0.1919 0.047*
C15 0.1951 (6) 0.3238 (2) 0.1237 (2) 0.0407 (9)
H15A 0.2085 0.3732 0.1420 0.061*
H15B 0.1192 0.3256 0.0840 0.061*
H15C 0.3127 0.3045 0.1117 0.061*
C16 0.0475 (6) 0.1813 (2) 0.03444 (19) 0.0417 (9)
H16A −0.0103 0.1494 0.0017 0.063*
H16B 0.1773 0.1782 0.0293 0.063*
H16C 0.0087 0.2319 0.0274 0.063*
C17 0.2593 (6) 0.0286 (2) 0.04130 (19) 0.0388 (9)
H17 0.3666 0.0512 0.0268 0.047*
C18 0.1540 (5) −0.01020 (19) −0.00112 (19) 0.0364 (8)
C19 0.1871 (5) −0.0250 (2) −0.07525 (19) 0.0433 (10)
H19 0.1618 −0.0780 −0.0832 0.052*
C20 0.0537 (6) 0.0199 (2) −0.1194 (2) 0.0452 (10)
H20A −0.0670 0.0156 −0.1010 0.068*
H20B 0.0552 0.0007 −0.1649 0.068*
H20C 0.0895 0.0715 −0.1197 0.068*
C21 0.3860 (6) −0.0108 (2) −0.0965 (2) 0.0467 (10)
H21A 0.4165 0.0406 −0.0883 0.070*
H21B 0.4001 −0.0217 −0.1440 0.070*
H21C 0.4654 −0.0424 −0.0706 0.070*
C22 0.1092 (6) −0.1652 (2) 0.0662 (2) 0.0415 (9)
C23 0.2168 (6) −0.2869 (2) 0.0970 (2) 0.0429 (9)
H23A 0.1186 −0.3141 0.0752 0.051*
H23B 0.3167 −0.2825 0.0650 0.051*
C24 0.2779 (6) −0.3275 (2) 0.1586 (2) 0.0447 (10)
H24A 0.3775 −0.3011 0.1792 0.067*
H24B 0.3169 −0.3769 0.1462 0.067*
H24C 0.1789 −0.3309 0.1904 0.067*
C25 0.1958 (5) 0.2900 (2) 0.24603 (19) 0.0371 (8)
C26 0.3572 (5) −0.0844 (2) 0.1500 (2) 0.0384 (9)
O1 0.2639 (4) 0.35119 (14) 0.25908 (13) 0.0424 (7)
H1B 0.3484 0.3602 0.2308 0.051*
O2 0.1860 (4) 0.23935 (14) 0.29190 (13) 0.0423 (7)
O3 0.4065 (4) −0.09128 (14) 0.21215 (13) 0.0436 (7)
O4 0.4538 (4) −0.10191 (15) 0.10165 (13) 0.0409 (6)
H4D 0.3978 −0.1341 0.0778 0.049*
O5 0.1529 (4) −0.21151 (13) 0.11749 (13) 0.0391 (6)
O6 0.1159 (3) −0.18329 (13) 0.00746 (14) 0.0408 (6)
O7 0.2953 (4) 0.28560 (15) 0.40900 (13) 0.0425 (6)
H7A 0.2924 0.3307 0.4224 0.051*
H7B 0.2238 0.2594 0.4333 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0347 (19) 0.0271 (17) 0.040 (2) −0.0036 (16) 0.0019 (17) −0.0020 (15)
C2 0.0265 (18) 0.0361 (19) 0.0337 (19) −0.0052 (15) −0.0003 (16) −0.0016 (16)
C3 0.0275 (19) 0.040 (2) 0.048 (2) 0.0030 (16) −0.0046 (18) −0.0039 (17)
C4 0.0325 (19) 0.037 (2) 0.044 (2) 0.0000 (16) −0.0080 (17) −0.0032 (17)
C5 0.0271 (18) 0.0347 (19) 0.037 (2) 0.0018 (14) 0.0040 (16) −0.0036 (16)
C6 0.048 (2) 0.038 (2) 0.0274 (19) 0.0047 (18) 0.0051 (17) −0.0015 (15)
C7 0.035 (2) 0.0338 (19) 0.045 (2) −0.0025 (16) 0.0062 (17) −0.0028 (18)
C8 0.043 (2) 0.042 (2) 0.037 (2) 0.0004 (17) −0.0015 (19) −0.0089 (18)
C9 0.036 (2) 0.051 (2) 0.037 (2) −0.0026 (18) −0.0058 (18) −0.0076 (18)
C10 0.0252 (17) 0.039 (2) 0.038 (2) 0.0000 (15) 0.0017 (17) −0.0099 (16)
C11 0.0354 (19) 0.0377 (19) 0.035 (2) −0.0004 (16) 0.0016 (18) −0.0008 (16)
C12 0.0298 (19) 0.049 (2) 0.044 (2) 0.0025 (17) −0.0049 (17) −0.0099 (19)
C13 0.035 (2) 0.045 (2) 0.048 (2) 0.0020 (17) −0.0037 (18) −0.0020 (18)
C14 0.040 (2) 0.037 (2) 0.042 (2) 0.0057 (17) 0.0020 (18) −0.0030 (17)
C15 0.041 (2) 0.039 (2) 0.042 (2) −0.0034 (17) 0.0019 (18) 0.0011 (17)
C16 0.048 (2) 0.039 (2) 0.039 (2) 0.0049 (18) −0.0066 (18) 0.0010 (17)
C17 0.041 (2) 0.036 (2) 0.040 (2) 0.0054 (17) 0.0039 (18) −0.0010 (16)
C18 0.040 (2) 0.0335 (19) 0.0356 (19) 0.0076 (16) −0.0004 (17) 0.0017 (17)
C19 0.042 (2) 0.053 (2) 0.035 (2) 0.0143 (19) 0.0014 (18) 0.0017 (18)
C20 0.047 (2) 0.046 (2) 0.043 (2) 0.0144 (18) −0.0070 (19) 0.0063 (18)
C21 0.054 (3) 0.045 (2) 0.041 (2) −0.0068 (19) 0.021 (2) −0.0155 (19)
C22 0.048 (2) 0.032 (2) 0.044 (2) −0.0064 (18) 0.005 (2) −0.0064 (17)
C23 0.038 (2) 0.047 (2) 0.044 (2) 0.0031 (18) 0.0079 (19) −0.0003 (19)
C24 0.042 (2) 0.046 (2) 0.046 (2) 0.0153 (19) 0.0146 (19) 0.0098 (18)
C25 0.038 (2) 0.037 (2) 0.0358 (19) −0.0016 (17) −0.0063 (17) −0.0104 (17)
C26 0.045 (2) 0.0295 (19) 0.041 (2) 0.0031 (17) 0.0013 (18) −0.0051 (16)
O1 0.0412 (15) 0.0444 (15) 0.0415 (15) −0.0124 (13) −0.0165 (13) 0.0077 (12)
O2 0.0409 (15) 0.0438 (15) 0.0423 (14) −0.0094 (12) −0.0090 (13) 0.0049 (12)
O3 0.0449 (16) 0.0410 (14) 0.0449 (16) 0.0214 (13) −0.0168 (13) −0.0026 (12)
O4 0.0414 (15) 0.0439 (16) 0.0375 (15) 0.0136 (12) −0.0009 (12) −0.0033 (12)
O5 0.0464 (15) 0.0319 (13) 0.0391 (14) −0.0007 (12) 0.0035 (12) −0.0011 (11)
O6 0.0421 (15) 0.0375 (14) 0.0429 (15) 0.0016 (12) 0.0042 (13) −0.0123 (12)
O7 0.0413 (15) 0.0449 (15) 0.0413 (15) −0.0066 (12) −0.0096 (12) 0.0059 (13)

Geometric parameters (Å, °)

C1—C25 1.530 (5) C14—H14A 0.9700
C1—C2 1.532 (5) C14—H14B 0.9700
C1—C15 1.550 (5) C15—H15A 0.9600
C1—C14 1.557 (5) C15—H15B 0.9600
C2—C3 1.543 (5) C15—H15C 0.9600
C2—C11 1.557 (5) C16—H16A 0.9600
C2—H2 0.9800 C16—H16B 0.9600
C3—C4 1.523 (5) C16—H16C 0.9600
C3—H3A 0.9700 C17—C18 1.333 (5)
C3—H3B 0.9700 C17—H17 0.9300
C4—C5 1.533 (5) C18—C19 1.503 (5)
C4—H4A 0.9700 C19—C20 1.535 (5)
C4—H4B 0.9700 C19—C21 1.540 (6)
C5—C17 1.505 (5) C19—H19 0.9800
C5—C6 1.574 (5) C20—H20A 0.9600
C5—C10 1.574 (5) C20—H20B 0.9600
C6—C26 1.514 (5) C20—H20C 0.9600
C6—C7 1.557 (5) C21—H21A 0.9600
C6—H6 0.9800 C21—H21B 0.9600
C7—C22 1.510 (5) C21—H21C 0.9600
C7—C8 1.534 (5) C22—O6 1.201 (4)
C7—H7 0.9800 C22—O5 1.345 (5)
C8—C18 1.506 (5) C23—C24 1.484 (5)
C8—C9 1.532 (5) C23—O5 1.484 (5)
C8—H8 0.9800 C23—H23A 0.9700
C9—C10 1.562 (5) C23—H23B 0.9700
C9—H9A 0.9700 C24—H24A 0.9600
C9—H9B 0.9700 C24—H24B 0.9600
C10—C11 1.548 (5) C24—H24C 0.9600
C10—H10 0.9800 C25—O1 1.231 (4)
C11—C12 1.535 (5) C25—O2 1.281 (4)
C11—C16 1.548 (5) C26—O4 1.227 (4)
C12—C13 1.539 (5) C26—O3 1.282 (4)
C12—H12A 0.9700 O1—H1B 0.8499
C12—H12B 0.9700 O4—H4D 0.8500
C13—C14 1.524 (5) O7—H7A 0.8499
C13—H13A 0.9700 O7—H7B 0.8501
C13—H13B 0.9700
C25—C1—C2 109.6 (3) C14—C13—H13A 109.4
C25—C1—C15 107.4 (3) C12—C13—H13A 109.4
C2—C1—C15 115.1 (3) C14—C13—H13B 109.4
C25—C1—C14 103.6 (3) C12—C13—H13B 109.4
C2—C1—C14 110.1 (3) H13A—C13—H13B 108.0
C15—C1—C14 110.2 (3) C13—C14—C1 111.6 (3)
C1—C2—C3 113.6 (3) C13—C14—H14A 109.3
C1—C2—C11 117.2 (3) C1—C14—H14A 109.3
C3—C2—C11 110.5 (3) C13—C14—H14B 109.3
C1—C2—H2 104.7 C1—C14—H14B 109.3
C3—C2—H2 104.7 H14A—C14—H14B 108.0
C11—C2—H2 104.7 C1—C15—H15A 109.5
C4—C3—C2 110.1 (3) C1—C15—H15B 109.5
C4—C3—H3A 109.6 H15A—C15—H15B 109.5
C2—C3—H3A 109.6 C1—C15—H15C 109.5
C4—C3—H3B 109.6 H15A—C15—H15C 109.5
C2—C3—H3B 109.6 H15B—C15—H15C 109.5
H3A—C3—H3B 108.1 C11—C16—H16A 109.5
C3—C4—C5 114.2 (3) C11—C16—H16B 109.5
C3—C4—H4A 108.7 H16A—C16—H16B 109.5
C5—C4—H4A 108.7 C11—C16—H16C 109.5
C3—C4—H4B 108.7 H16A—C16—H16C 109.5
C5—C4—H4B 108.7 H16B—C16—H16C 109.5
H4A—C4—H4B 107.6 C18—C17—C5 116.6 (4)
C17—C5—C4 113.8 (3) C18—C17—H17 121.7
C17—C5—C6 107.3 (3) C5—C17—H17 121.7
C4—C5—C6 109.3 (3) C17—C18—C19 127.3 (4)
C17—C5—C10 109.1 (3) C17—C18—C8 112.1 (3)
C4—C5—C10 110.9 (3) C19—C18—C8 120.6 (3)
C6—C5—C10 106.2 (3) C18—C19—C20 110.7 (3)
C26—C6—C7 114.4 (3) C18—C19—C21 112.9 (3)
C26—C6—C5 110.0 (3) C20—C19—C21 111.4 (4)
C7—C6—C5 108.4 (3) C18—C19—H19 107.2
C26—C6—H6 108.0 C20—C19—H19 107.2
C7—C6—H6 108.0 C21—C19—H19 107.2
C5—C6—H6 108.0 C19—C20—H20A 109.5
C22—C7—C8 111.1 (3) C19—C20—H20B 109.5
C22—C7—C6 116.1 (3) H20A—C20—H20B 109.5
C8—C7—C6 109.8 (3) C19—C20—H20C 109.5
C22—C7—H7 106.4 H20A—C20—H20C 109.5
C8—C7—H7 106.4 H20B—C20—H20C 109.5
C6—C7—H7 106.4 C19—C21—H21A 109.5
C18—C8—C9 109.4 (3) C19—C21—H21B 109.5
C18—C8—C7 109.1 (3) H21A—C21—H21B 109.5
C9—C8—C7 107.0 (3) C19—C21—H21C 109.5
C18—C8—H8 110.4 H21A—C21—H21C 109.5
C9—C8—H8 110.4 H21B—C21—H21C 109.5
C7—C8—H8 110.4 O6—C22—O5 123.1 (3)
C8—C9—C10 110.7 (3) O6—C22—C7 125.3 (4)
C8—C9—H9A 109.5 O5—C22—C7 111.5 (3)
C10—C9—H9A 109.5 C24—C23—O5 108.6 (3)
C8—C9—H9B 109.5 C24—C23—H23A 110.0
C10—C9—H9B 109.5 O5—C23—H23A 110.0
H9A—C9—H9B 108.1 C24—C23—H23B 110.0
C11—C10—C9 114.9 (3) O5—C23—H23B 110.0
C11—C10—C5 115.8 (3) H23A—C23—H23B 108.3
C9—C10—C5 107.3 (3) C23—C24—H24A 109.5
C11—C10—H10 106.0 C23—C24—H24B 109.5
C9—C10—H10 106.0 H24A—C24—H24B 109.5
C5—C10—H10 106.0 C23—C24—H24C 109.5
C12—C11—C16 109.0 (3) H24A—C24—H24C 109.5
C12—C11—C10 107.9 (3) H24B—C24—H24C 109.5
C16—C11—C10 112.3 (3) O1—C25—O2 120.3 (3)
C12—C11—C2 108.1 (3) O1—C25—C1 122.7 (3)
C16—C11—C2 113.3 (3) O2—C25—C1 116.7 (3)
C10—C11—C2 106.0 (3) O4—C26—O3 123.5 (4)
C11—C12—C13 113.0 (3) O4—C26—C6 122.5 (4)
C11—C12—H12A 109.0 O3—C26—C6 113.9 (3)
C13—C12—H12A 109.0 C25—O1—H1B 109.1
C11—C12—H12B 109.0 C26—O4—H4D 108.8
C13—C12—H12B 109.0 C22—O5—C23 115.6 (3)
H12A—C12—H12B 107.8 H7A—O7—H7B 109.5
C14—C13—C12 111.3 (3)
C25—C1—C2—C3 −65.4 (4) C3—C2—C11—C12 177.2 (3)
C15—C1—C2—C3 55.8 (4) C1—C2—C11—C16 70.3 (4)
C14—C1—C2—C3 −178.8 (3) C3—C2—C11—C16 −61.9 (4)
C25—C1—C2—C11 163.8 (3) C1—C2—C11—C10 −166.1 (3)
C15—C1—C2—C11 −75.0 (4) C3—C2—C11—C10 61.7 (4)
C14—C1—C2—C11 50.4 (4) C16—C11—C12—C13 −70.6 (4)
C1—C2—C3—C4 162.8 (3) C10—C11—C12—C13 167.2 (3)
C11—C2—C3—C4 −63.2 (4) C2—C11—C12—C13 52.9 (4)
C2—C3—C4—C5 54.5 (4) C11—C12—C13—C14 −58.7 (4)
C3—C4—C5—C17 77.7 (4) C12—C13—C14—C1 56.6 (4)
C3—C4—C5—C6 −162.5 (3) C25—C1—C14—C13 −168.7 (3)
C3—C4—C5—C10 −45.8 (4) C2—C1—C14—C13 −51.5 (4)
C17—C5—C6—C26 70.7 (4) C15—C1—C14—C13 76.6 (4)
C4—C5—C6—C26 −53.1 (4) C4—C5—C17—C18 177.6 (3)
C10—C5—C6—C26 −172.8 (3) C6—C5—C17—C18 56.6 (4)
C17—C5—C6—C7 −55.0 (4) C10—C5—C17—C18 −57.9 (4)
C4—C5—C6—C7 −178.8 (3) C5—C17—C18—C19 −179.1 (3)
C10—C5—C6—C7 61.5 (4) C5—C17—C18—C8 1.6 (5)
C26—C6—C7—C22 5.7 (5) C9—C8—C18—C17 57.1 (4)
C5—C6—C7—C22 128.8 (3) C7—C8—C18—C17 −59.7 (4)
C26—C6—C7—C8 −121.4 (3) C9—C8—C18—C19 −122.3 (4)
C5—C6—C7—C8 1.8 (4) C7—C8—C18—C19 120.9 (3)
C22—C7—C8—C18 −74.8 (4) C17—C18—C19—C20 −108.6 (4)
C6—C7—C8—C18 55.0 (4) C8—C18—C19—C20 70.7 (5)
C22—C7—C8—C9 166.9 (3) C17—C18—C19—C21 17.0 (6)
C6—C7—C8—C9 −63.3 (4) C8—C18—C19—C21 −163.7 (3)
C18—C8—C9—C10 −57.4 (4) C8—C7—C22—O6 −1.2 (6)
C7—C8—C9—C10 60.7 (4) C6—C7—C22—O6 −127.6 (4)
C8—C9—C10—C11 133.3 (3) C8—C7—C22—O5 −177.8 (3)
C8—C9—C10—C5 3.0 (4) C6—C7—C22—O5 55.8 (4)
C17—C5—C10—C11 −78.5 (4) C2—C1—C25—O1 152.3 (4)
C4—C5—C10—C11 47.7 (4) C15—C1—C25—O1 26.5 (5)
C6—C5—C10—C11 166.3 (3) C14—C1—C25—O1 −90.2 (4)
C17—C5—C10—C9 51.4 (4) C2—C1—C25—O2 −32.6 (4)
C4—C5—C10—C9 177.5 (3) C15—C1—C25—O2 −158.4 (3)
C6—C5—C10—C9 −63.9 (4) C14—C1—C25—O2 84.9 (4)
C9—C10—C11—C12 63.4 (4) C7—C6—C26—O4 52.3 (5)
C5—C10—C11—C12 −170.5 (3) C5—C6—C26—O4 −69.9 (4)
C9—C10—C11—C16 −56.8 (4) C7—C6—C26—O3 −131.2 (3)
C5—C10—C11—C16 69.3 (4) C5—C6—C26—O3 106.5 (4)
C9—C10—C11—C2 179.0 (3) O6—C22—O5—C23 2.0 (5)
C5—C10—C11—C2 −54.9 (4) C7—C22—O5—C23 178.7 (3)
C1—C2—C11—C12 −50.6 (4) C24—C23—O5—C22 173.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4D···O5 0.85 2.40 2.971 (4) 125
O7—H7B···O6i 0.85 2.32 2.745 (4) 111
C2—H2···O2 0.98 2.31 2.735 (4) 105
C15—H15A···O1 0.96 2.37 2.756 (5) 103

Symmetry codes: (i) −x+1/2, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2234).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Li, Y.-H., Ren, T.-R., Guo, J.-P. & Liu, J.-C. (2005). Acta Cryst. E61, o4305–o4306.
  3. McCoy, M. (2000). Chem. Eng. News, 78, 13–15.
  4. Pan, Y.-M., Yang, L., Wang, H.-S., Zhao, Z.-C. & Zhang, Y. (2006). Acta Cryst. E62, o5701–o5703.
  5. Rao, X.-P., Song, Z.-Q., Radbil, B. & Radbil, A. (2006). Acta Cryst. E62, o5301–o5302.
  6. Savluchinske-Feio, S., Nunes, L., Pereira, P. T., Silva, A. M., Roseiro, J. C., Gigante, B. & Marcelo Curto, M. J. (2007). J. Microbiol. Methods, 70, 465–470. [DOI] [PubMed]
  7. Schweizer, R. A. S., Atanasov, A. G., Frey, B. M. & Odermatt, A. (2003). Molec. Cellular Endocrinol.212, 41–49. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028141/bh2234sup1.cif

e-65-o1959-sup1.cif (25.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028141/bh2234Isup2.hkl

e-65-o1959-Isup2.hkl (142KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES