Abstract
The addition of the platelet-activating factor (PAF) to neutrophils causes an increase in cytoskeletal actin, a rise in the intracellular concentration of free calcium, release of arachidonic acid, and the synthesis of PAF. The PAF synthesis in human neutrophils stimulated by PAF is greatly potentiated by the human granulocyte-macrophage colony-stimulating factor. Incubation of human neutrophils with the tumor copromoter phorbol 12-myristate 13-acetate (PMA) for 3 min prior to the addition of the stimulus inhibits all these responses produced by PAF. The inhibition is prevented when the cells are incubated with protein kinase C inhibitors such as 1-(5-isoquinolinesulfonyl)-2-methylpiperazine for 5 min prior to the addition of PMA. The rise in the intracellular concentration of free calcium in human neutrophils stimulated with leukotriene B4 is also inhibited by PMA, and this inhibition is prevented by protein kinase C inhibitors such as staurosporine. Unlike PMA, the inactive ester 4 alpha-phorbol 12,13-didecanoate has no inhibitory effect on the stimulated rise in the intracellular concentration of free calcium. The binding of either PAF or leukotriene B4 to intact cells is inhibited by PMA. The most important finding of the present studies is that PMA interferes with the binding of PAF and leukotriene B4 to their respective receptors. Whether PMA inhibits the binding of these lipid mediators by activating protein kinase C or by perturbing the membrane directly remains to be elucidated.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdel-Latif A. A. Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev. 1986 Sep;38(3):227–272. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Babior B. M. Protein phosphorylation and the respiratory burst. Arch Biochem Biophys. 1988 Aug 1;264(2):361–367. doi: 10.1016/0003-9861(88)90300-1. [DOI] [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
- Billah M. M., Lapetina E. G., Cuatrecasas P. Phospholipase A2 and phospholipase C activities of platelets. Differential substrate specificity, Ca2+ requirement, pH dependence, and cellular localization. J Biol Chem. 1980 Nov 10;255(21):10227–10231. [PubMed] [Google Scholar]
- Boxer G. J., Curnutte J. T., Boxer L. A. Polymorphonuclear leukocyte function. Hosp Pract (Off Ed) 1985 Mar 15;20(3):69-73, 77, 80 passim. doi: 10.1080/21548331.1985.11703014. [DOI] [PubMed] [Google Scholar]
- Corey E. J., Niwa H., Falck J. R., Mioskowski C., Arai Y., Marfat A. Recent studies on the chemical synthesis of eicosanoids. Adv Prostaglandin Thromboxane Res. 1980;6:19–25. [PubMed] [Google Scholar]
- English D., Andersen B. R. Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque. J Immunol Methods. 1974 Aug;5(3):249–252. doi: 10.1016/0022-1759(74)90109-4. [DOI] [PubMed] [Google Scholar]
- Goldman D. W., Goetzl E. J. Selective transduction of human polymorphonuclear leukocyte functions by subsets of receptors for leukotriene B4. J Allergy Clin Immunol. 1984 Sep;74(3 Pt 2):373–377. doi: 10.1016/0091-6749(84)90133-7. [DOI] [PubMed] [Google Scholar]
- Lands W. E., Samuelsson B. Phospholipid precursors of prostaglandins. Biochim Biophys Acta. 1968 Oct 22;164(2):426–429. doi: 10.1016/0005-2760(68)90168-9. [DOI] [PubMed] [Google Scholar]
- Matsumoto T., Tao W., Sha'afi R. I. Demonstration of calcium-dependent phospholipase A2 activity in membrane preparation of rabbit neutrophils. Absence of activation by fMet-Leu-Phe, phorbol 12-myristate 13-acetate and A-kinase. Biochem J. 1988 Mar 1;250(2):343–348. doi: 10.1042/bj2500343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molski T. F., Tao W., Becker E. L., Sha'afi R. I. Intracellular calcium rise produced by platelet-activating factor is deactivated by fMet-Leu-Phe and this requires uninterrupted activation sequence: role of protein kinase C. Biochem Biophys Res Commun. 1988 Mar 15;151(2):836–843. doi: 10.1016/s0006-291x(88)80357-7. [DOI] [PubMed] [Google Scholar]
- Naccache P. H., Sha'afi R. I. Ionic events relevant to neutrophil activation. Methods Enzymol. 1988;162:283–298. doi: 10.1016/0076-6879(88)62084-2. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
- O'Flaherty J. T., Redman J. F., Jacobson D. P. Protein kinase C regulates leukotriene B4 receptors in human neutrophils. FEBS Lett. 1986 Oct 6;206(2):279–282. doi: 10.1016/0014-5793(86)80996-6. [DOI] [PubMed] [Google Scholar]
- O'Flaherty J. T., Surles J. R., Redman J., Jacobson D., Piantadosi C., Wykle R. L. Binding and metabolism of platelet-activating factor by human neutrophils. J Clin Invest. 1986 Aug;78(2):381–388. doi: 10.1172/JCI112588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollock W. K., Rink T. J., Irvine R. F. Liberation of [3H]arachidonic acid and changes in cytosolic free calcium in fura-2-loaded human platelets stimulated by ionomycin and collagen. Biochem J. 1986 May 1;235(3):869–877. doi: 10.1042/bj2350869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta. 1986 Nov 4;853(1):65–89. doi: 10.1016/0304-4173(86)90005-4. [DOI] [PubMed] [Google Scholar]
- Rubin R. P., Sink L. E., Freer R. J. On the relationship between formylmethionyl-leucyl-phenylalanine stimulation of arachidonyl phosphatidylinositol turnover and lysosomal enzyme secretion by rabbit neutrophils. Mol Pharmacol. 1981 Jan;19(1):31–37. [PubMed] [Google Scholar]
- Sha'afi R. I., Molski T. F. Activation of the neutrophil. Prog Allergy. 1988;42:1–64. doi: 10.1159/000318681. [DOI] [PubMed] [Google Scholar]
- Sha'afi R. I., Shefcyk J., Yassin R., Molski T. F., Volpi M., Naccache P. H., White J. R., Feinstein M. B., Becker E. L. Is a rise in intracellular concentration of free calcium necessary or sufficient for stimulated cytoskeletal-associated actin? J Cell Biol. 1986 Apr;102(4):1459–1463. doi: 10.1083/jcb.102.4.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith D. M., Jr, Waite M. Phospholipid metabolism in human neutrophil subfractions. Arch Biochem Biophys. 1986 Apr;246(1):263–273. doi: 10.1016/0003-9861(86)90472-8. [DOI] [PubMed] [Google Scholar]
- Tao W., Molski T. F., Sha'afi R. I. Arachidonic acid release in rabbit neutrophils. Biochem J. 1989 Feb 1;257(3):633–637. doi: 10.1042/bj2570633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tauber A. I. Protein kinase C and the activation of the human neutrophil NADPH-oxidase. Blood. 1987 Mar;69(3):711–720. [PubMed] [Google Scholar]
- Volpi M., Yassin R., Tao W., Molski T. F., Naccache P. H., Sha'afi R. I. Leukotriene B4 mobilizes calcium without the breakdown of polyphosphoinositides and the production of phosphatidic acid in rabbit neutrophils. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5966–5969. doi: 10.1073/pnas.81.19.5966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wykle R. L., Malone B., Snyder F. Enzymatic synthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a hypotensive and platelet-aggregating lipid. J Biol Chem. 1980 Nov 10;255(21):10256–10260. [PubMed] [Google Scholar]
