Abstract
In the crystal structure of the title compound, [Cu2(CH3COO)4(C9H7N)2], the CuII cation is coordinated by four acetate anions and one isoquinoline molecule in a distorted square-pyramidal geometry; the CuII cation is 0.1681 (6) Å from the basal coordination plane formed by the four O atoms. Each acetate anion bridges two CuII cations to form the centrosymmetric dinuclear complex. Within the dinuclear molecule, the Cu⋯Cu separation is 2.6459 (4) Å. A parallel arrangement of isoquinoline ligands of adjacent complexes is observed in the crystal structure; the face-to-face distance of 3.610 (10) Å suggests there is no π–π stacking between isoquinoline ring systems.
Related literature
For general background on the nature of π–π stacking, see: Su & Xu (2004 ▶); Xu et al. (2007 ▶). For related isoquinoline complexes, see: Clegg & Straughan (1989 ▶); Ivanikova et al. (2006 ▶). For a related quinoline complex, see: Pan & Xu (2004 ▶). For the metal atomic deviation from the basal coordination plane in square-pyramidal coordination geometry, see: Xie & Xu (2005 ▶). For the Cu⋯Cu distance in a polymeric CuII complex, see: Li et al. (2007 ▶).
Experimental
Crystal data
[Cu2(C2H3O2)4(C9H7N)2]
M r = 621.57
Monoclinic,
a = 12.2278 (3) Å
b = 8.1610 (2) Å
c = 13.5309 (4) Å
β = 103.827 (8)°
V = 1311.13 (7) Å3
Z = 2
Mo Kα radiation
μ = 1.67 mm−1
T = 294 K
0.28 × 0.26 × 0.20 mm
Data collection
Rigaku R-AXIS RAPID IP diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995 ▶) T min = 0.635, T max = 0.720
12480 measured reflections
2997 independent reflections
2638 reflections with I > 2σ(I)
R int = 0.024
Refinement
R[F 2 > 2σ(F 2)] = 0.025
wR(F 2) = 0.074
S = 1.06
2997 reflections
172 parameters
H-atom parameters constrained
Δρmax = 0.27 e Å−3
Δρmin = −0.40 e Å−3
Data collection: PROCESS-AUTO (Rigaku, 1998 ▶); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 ▶); program(s) used to solve structure: SIR92 (Altomare et al., 1993 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025732/bq2151sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025732/bq2151Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected bond lengths (Å).
Cu—N1 | 2.1789 (15) |
Cu—O1 | 1.9771 (13) |
Cu—O2i | 1.9728 (13) |
Cu—O3 | 1.9777 (13) |
Cu—O4i | 1.9740 (13) |
Symmetry code: (i) .
Acknowledgments
This work was supported by the ZIJIN project of Zhejiang University, China.
supplementary crystallographic information
Comment
As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its crystal structure is reported here.
The molecular structure is shown in Fig. 1. The CuII cation is coordinated by four O atoms from four acetate anions in the basal plane, an isoquinoline molecule coordinates to the CuII cation in the apical position to complete the distorted square-pyramidal coordination geometry. The CuII cation is 0.1681 (6) Å deviated from the basal coordination plane, which is consistent with the situation found in complexes with square-pyramidal coordination geometry (Xie & Xu, 2005). The Cu—N bond in the apical direction is longer than Cu—O bonds in the basal plane by ca 0.2 Å, showing the typical Jahn-Teller distortion. Each acetate anion bridges two CuII cations to form the centro-symmetric dinuclear complex. Within the dinuclear molecule the Cu···Cu separation is 2.6459 (4) Å, similar to 2.642 Å found in a polymeric CuII complex bridged by thiourea (Li et al. 2007).
The parallel arrangement of isoquinoline ligands of adjacent complexes is observed in the crystal structure (Fig. 2). The face-to-face distance of 3.610 (10) Å is close to 3.573 (5) Å found in a quinoline complex (Pan & Xu, 2004) and suggests no π-π stacking between isoquinoline ring systems.
Experimental
A water-ethanol solution (10 ml, 1:2) of isoquinoline (0.12 ml, 1 mmol) and copper acetate monohydrate (0.10 g, 0.5 mmol) was refluxed for 2.5 h. After cooling to room temperature the solution was filtered. The single crystals of the title compound were obtained from the filtrate after 3 d.
Refinement
Methyl H atoms were equally disordered over two sites with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms). The disordered methyl H atoms are not shown for clarify [symmetry code: (i) 1 - x, 1 - y, 1 - z].
Fig. 2.
The unit cell packing diagram showing the parallel arrangement of isoquinoline ligands.
Crystal data
[Cu2(C2H3O2)4(C9H7N)2] | F(000) = 636 |
Mr = 621.57 | Dx = 1.574 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 10519 reflections |
a = 12.2278 (3) Å | θ = 3.0–25.5° |
b = 8.1610 (2) Å | µ = 1.67 mm−1 |
c = 13.5309 (4) Å | T = 294 K |
β = 103.827 (8)° | Chunk, blue |
V = 1311.13 (7) Å3 | 0.28 × 0.26 × 0.20 mm |
Z = 2 |
Data collection
Rigaku R-AXIS RAPID IP diffractometer | 2997 independent reflections |
Radiation source: fine-focus sealed tube | 2638 reflections with I > 2σ(I) |
graphite | Rint = 0.024 |
Detector resolution: 10.0 pixels mm-1 | θmax = 27.4°, θmin = 3.0° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −10→10 |
Tmin = 0.635, Tmax = 0.720 | l = −17→17 |
12480 measured reflections |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0405P)2 + 0.4143P] where P = (Fo2 + 2Fc2)/3 |
2997 reflections | (Δ/σ)max = 0.001 |
172 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu | 0.411018 (16) | 0.55776 (2) | 0.528203 (14) | 0.03074 (9) | |
N1 | 0.26051 (12) | 0.65641 (18) | 0.56603 (11) | 0.0360 (3) | |
O1 | 0.32898 (12) | 0.45444 (18) | 0.39965 (11) | 0.0457 (3) | |
O2 | 0.47861 (11) | 0.35876 (18) | 0.35131 (10) | 0.0453 (3) | |
O3 | 0.43805 (12) | 0.75437 (16) | 0.45194 (11) | 0.0451 (3) | |
O4 | 0.58673 (12) | 0.65621 (17) | 0.40330 (11) | 0.0457 (3) | |
C1 | 0.16249 (15) | 0.6461 (2) | 0.49949 (14) | 0.0378 (4) | |
H1 | 0.1593 | 0.5883 | 0.4396 | 0.045* | |
C2 | −0.04146 (17) | 0.7044 (3) | 0.43993 (16) | 0.0496 (5) | |
H2 | −0.0450 | 0.6483 | 0.3794 | 0.060* | |
C3 | −0.13598 (18) | 0.7741 (3) | 0.4580 (2) | 0.0576 (6) | |
H3 | −0.2040 | 0.7653 | 0.4096 | 0.069* | |
C4 | −0.13180 (19) | 0.8585 (3) | 0.5482 (2) | 0.0595 (6) | |
H4 | −0.1972 | 0.9052 | 0.5593 | 0.071* | |
C5 | −0.03322 (19) | 0.8738 (3) | 0.62062 (18) | 0.0547 (5) | |
H5 | −0.0318 | 0.9312 | 0.6803 | 0.066* | |
C6 | 0.17226 (17) | 0.8114 (3) | 0.67579 (15) | 0.0476 (5) | |
H6 | 0.1791 | 0.8668 | 0.7370 | 0.057* | |
C7 | 0.26360 (16) | 0.7388 (3) | 0.65421 (14) | 0.0428 (4) | |
H7 | 0.3320 | 0.7457 | 0.7022 | 0.051* | |
C8 | 0.06221 (15) | 0.7172 (2) | 0.51336 (14) | 0.0364 (4) | |
C9 | 0.06649 (16) | 0.8026 (2) | 0.60497 (14) | 0.0395 (4) | |
C10 | 0.37462 (16) | 0.3780 (2) | 0.34010 (13) | 0.0365 (4) | |
C11 | 0.2983 (2) | 0.3021 (3) | 0.24755 (17) | 0.0588 (6) | |
H11A | 0.3428 | 0.2473 | 0.2081 | 0.088* | 0.50 |
H11B | 0.2540 | 0.3861 | 0.2071 | 0.088* | 0.50 |
H11C | 0.2493 | 0.2244 | 0.2685 | 0.088* | 0.50 |
H11D | 0.2213 | 0.3245 | 0.2477 | 0.088* | 0.50 |
H11E | 0.3101 | 0.1857 | 0.2487 | 0.088* | 0.50 |
H11F | 0.3148 | 0.3474 | 0.1873 | 0.088* | 0.50 |
C12 | 0.51710 (15) | 0.7661 (2) | 0.40790 (13) | 0.0361 (4) | |
C13 | 0.5292 (2) | 0.9275 (3) | 0.3568 (2) | 0.0589 (6) | |
H13A | 0.4710 | 1.0012 | 0.3656 | 0.088* | 0.50 |
H13B | 0.5226 | 0.9096 | 0.2855 | 0.088* | 0.50 |
H13C | 0.6015 | 0.9742 | 0.3869 | 0.088* | 0.50 |
H13D | 0.5924 | 0.9221 | 0.3264 | 0.088* | 0.50 |
H13E | 0.5408 | 1.0137 | 0.4065 | 0.088* | 0.50 |
H13F | 0.4619 | 0.9491 | 0.3051 | 0.088* | 0.50 |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.02788 (12) | 0.03427 (13) | 0.03091 (13) | 0.00155 (8) | 0.00869 (8) | −0.00023 (8) |
N1 | 0.0332 (7) | 0.0399 (8) | 0.0368 (7) | 0.0025 (6) | 0.0117 (6) | 0.0014 (6) |
O1 | 0.0362 (7) | 0.0574 (9) | 0.0413 (7) | −0.0006 (6) | 0.0050 (6) | −0.0134 (6) |
O2 | 0.0393 (7) | 0.0568 (9) | 0.0388 (7) | 0.0013 (6) | 0.0074 (5) | −0.0118 (6) |
O3 | 0.0476 (8) | 0.0401 (7) | 0.0518 (8) | 0.0056 (6) | 0.0203 (6) | 0.0090 (6) |
O4 | 0.0450 (7) | 0.0423 (7) | 0.0554 (8) | 0.0042 (6) | 0.0231 (6) | 0.0123 (6) |
C1 | 0.0375 (9) | 0.0428 (10) | 0.0346 (9) | 0.0026 (8) | 0.0114 (7) | −0.0010 (7) |
C2 | 0.0396 (10) | 0.0552 (12) | 0.0504 (11) | 0.0017 (9) | 0.0034 (9) | −0.0025 (9) |
C3 | 0.0337 (10) | 0.0629 (14) | 0.0717 (15) | 0.0037 (10) | 0.0040 (10) | 0.0051 (12) |
C4 | 0.0389 (11) | 0.0697 (15) | 0.0745 (15) | 0.0144 (11) | 0.0224 (11) | 0.0079 (12) |
C5 | 0.0492 (12) | 0.0660 (14) | 0.0549 (12) | 0.0133 (11) | 0.0242 (10) | −0.0007 (11) |
C6 | 0.0470 (11) | 0.0602 (12) | 0.0369 (9) | 0.0062 (10) | 0.0124 (8) | −0.0086 (9) |
C7 | 0.0355 (9) | 0.0547 (11) | 0.0377 (9) | 0.0015 (9) | 0.0076 (7) | −0.0045 (8) |
C8 | 0.0336 (9) | 0.0371 (9) | 0.0396 (9) | 0.0004 (7) | 0.0112 (7) | 0.0056 (7) |
C9 | 0.0376 (9) | 0.0432 (10) | 0.0408 (9) | 0.0048 (8) | 0.0152 (8) | 0.0041 (8) |
C10 | 0.0397 (9) | 0.0368 (9) | 0.0304 (8) | −0.0032 (8) | 0.0032 (7) | 0.0001 (7) |
C11 | 0.0534 (13) | 0.0723 (15) | 0.0437 (11) | −0.0073 (11) | −0.0021 (9) | −0.0175 (11) |
C12 | 0.0378 (9) | 0.0343 (9) | 0.0349 (8) | −0.0040 (8) | 0.0059 (7) | 0.0025 (7) |
C13 | 0.0721 (16) | 0.0412 (11) | 0.0687 (15) | −0.0020 (10) | 0.0271 (13) | 0.0150 (10) |
Geometric parameters (Å, °)
Cu—N1 | 2.1789 (15) | C4—H4 | 0.9300 |
Cu—O1 | 1.9771 (13) | C5—C9 | 1.412 (3) |
Cu—O2i | 1.9728 (13) | C5—H5 | 0.9300 |
Cu—O3 | 1.9777 (13) | C6—C7 | 1.356 (3) |
Cu—O4i | 1.9740 (13) | C6—C9 | 1.416 (3) |
Cu—Cui | 2.6459 (4) | C6—H6 | 0.9300 |
N1—C1 | 1.318 (2) | C7—H7 | 0.9300 |
N1—C7 | 1.362 (2) | C8—C9 | 1.412 (3) |
O1—C10 | 1.251 (2) | C10—C11 | 1.505 (3) |
O2—C10 | 1.254 (2) | C11—H11A | 0.9600 |
O2—Cui | 1.9728 (13) | C11—H11B | 0.9600 |
O3—C12 | 1.255 (2) | C11—H11C | 0.9600 |
O4—C12 | 1.249 (2) | C11—H11D | 0.9600 |
O4—Cui | 1.9740 (13) | C11—H11E | 0.9600 |
C1—C8 | 1.409 (3) | C11—H11F | 0.9600 |
C1—H1 | 0.9300 | C12—C13 | 1.510 (3) |
C2—C3 | 1.362 (3) | C13—H13A | 0.9600 |
C2—C8 | 1.415 (3) | C13—H13B | 0.9600 |
C2—H2 | 0.9300 | C13—H13C | 0.9600 |
C3—C4 | 1.391 (3) | C13—H13D | 0.9600 |
C3—H3 | 0.9300 | C13—H13E | 0.9600 |
C4—C5 | 1.366 (3) | C13—H13F | 0.9600 |
O2i—Cu—O4i | 89.28 (6) | O1—C10—O2 | 125.47 (17) |
O2i—Cu—O1 | 167.80 (6) | O1—C10—C11 | 117.25 (18) |
O4i—Cu—O1 | 89.03 (6) | O2—C10—C11 | 117.28 (18) |
O2i—Cu—O3 | 89.10 (6) | C10—C11—H11A | 109.5 |
O4i—Cu—O3 | 167.77 (6) | C10—C11—H11B | 109.5 |
O1—Cu—O3 | 90.00 (6) | H11A—C11—H11B | 109.5 |
O2i—Cu—N1 | 97.34 (6) | C10—C11—H11C | 109.5 |
O4i—Cu—N1 | 97.72 (6) | H11A—C11—H11C | 109.5 |
O1—Cu—N1 | 94.86 (6) | H11B—C11—H11C | 109.5 |
O3—Cu—N1 | 94.51 (6) | C10—C11—H11D | 109.5 |
O2i—Cu—Cui | 85.07 (4) | H11A—C11—H11D | 141.1 |
O4i—Cu—Cui | 84.27 (4) | H11B—C11—H11D | 56.3 |
O1—Cu—Cui | 82.74 (4) | H11C—C11—H11D | 56.3 |
O3—Cu—Cui | 83.51 (4) | C10—C11—H11E | 109.5 |
N1—Cu—Cui | 176.88 (4) | H11A—C11—H11E | 56.3 |
C1—N1—C7 | 117.39 (16) | H11B—C11—H11E | 141.1 |
C1—N1—Cu | 119.81 (12) | H11C—C11—H11E | 56.3 |
C7—N1—Cu | 122.68 (12) | H11D—C11—H11E | 109.5 |
C10—O1—Cu | 124.66 (12) | C10—C11—H11F | 109.5 |
C10—O2—Cui | 122.03 (12) | H11A—C11—H11F | 56.3 |
C12—O3—Cu | 123.63 (12) | H11B—C11—H11F | 56.3 |
C12—O4—Cui | 123.05 (12) | H11C—C11—H11F | 141.1 |
N1—C1—C8 | 124.11 (17) | H11D—C11—H11F | 109.5 |
N1—C1—H1 | 117.9 | H11E—C11—H11F | 109.5 |
C8—C1—H1 | 117.9 | O4—C12—O3 | 125.49 (17) |
C3—C2—C8 | 119.9 (2) | O4—C12—C13 | 117.46 (18) |
C3—C2—H2 | 120.0 | O3—C12—C13 | 117.04 (18) |
C8—C2—H2 | 120.0 | C12—C13—H13A | 109.5 |
C2—C3—C4 | 120.6 (2) | C12—C13—H13B | 109.5 |
C2—C3—H3 | 119.7 | H13A—C13—H13B | 109.5 |
C4—C3—H3 | 119.7 | C12—C13—H13C | 109.5 |
C5—C4—C3 | 121.1 (2) | H13A—C13—H13C | 109.5 |
C5—C4—H4 | 119.5 | H13B—C13—H13C | 109.5 |
C3—C4—H4 | 119.5 | C12—C13—H13D | 109.5 |
C4—C5—C9 | 120.0 (2) | H13A—C13—H13D | 141.1 |
C4—C5—H5 | 120.0 | H13B—C13—H13D | 56.3 |
C9—C5—H5 | 120.0 | H13C—C13—H13D | 56.3 |
C7—C6—C9 | 119.90 (18) | C12—C13—H13E | 109.5 |
C7—C6—H6 | 120.1 | H13A—C13—H13E | 56.3 |
C9—C6—H6 | 120.1 | H13B—C13—H13E | 141.1 |
C6—C7—N1 | 123.52 (17) | H13C—C13—H13E | 56.3 |
C6—C7—H7 | 118.2 | H13D—C13—H13E | 109.5 |
N1—C7—H7 | 118.2 | C12—C13—H13F | 109.5 |
C1—C8—C9 | 117.99 (16) | H13A—C13—H13F | 56.3 |
C1—C8—C2 | 122.54 (17) | H13B—C13—H13F | 56.3 |
C9—C8—C2 | 119.46 (17) | H13C—C13—H13F | 141.1 |
C8—C9—C5 | 118.87 (18) | H13D—C13—H13F | 109.5 |
C8—C9—C6 | 117.09 (17) | H13E—C13—H13F | 109.5 |
C5—C9—C6 | 124.04 (19) |
Symmetry codes: (i) −x+1, −y+1, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2151).
References
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
- Clegg, W. & Straughan, B. P. (1989). Acta Cryst. C45, 1992–1994.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
- Ivanikova, R., Boca, R., Dlhan, L., Fuess, H., Maslejova, A., Mrazova, V., Svoboda, I. & Titis, J. (2006). Polyhedron, 25, 3261–3268.
- Li, D.-X., Xu, D.-J. & Xu, Y.-Z. (2007). J. Coord. Chem.60, 2687–2694.
- Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.
- Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem.57, 223–229.
- Xie, A.-L. & Xu, D.-J. (2005). J. Coord. Chem.58, 225–230.
- Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025732/bq2151sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025732/bq2151Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report