Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 8;65(Pt 8):m881. doi: 10.1107/S1600536809025732

Tetra-μ2-acetato-κ8 O:O′-bis­[(isoquinoline-κN)copper(II)]

Meng-Jiao Li a, Jing-Jing Nie a, Duan-Jun Xu a,*
PMCID: PMC2977170  PMID: 21583345

Abstract

In the crystal structure of the title compound, [Cu2(CH3COO)4(C9H7N)2], the CuII cation is coordinated by four acetate anions and one isoquinoline mol­ecule in a distorted square-pyramidal geometry; the CuII cation is 0.1681 (6) Å from the basal coordination plane formed by the four O atoms. Each acetate anion bridges two CuII cations to form the centrosymmetric dinuclear complex. Within the dinuclear mol­ecule, the Cu⋯Cu separation is 2.6459 (4) Å. A parallel arrangement of isoquinoline ligands of adjacent complexes is observed in the crystal structure; the face-to-face distance of 3.610 (10) Å suggests there is no π–π stacking between isoquinoline ring systems.

Related literature

For general background on the nature of π–π stacking, see: Su & Xu (2004); Xu et al. (2007). For related isoquinoline complexes, see: Clegg & Straughan (1989); Ivanikova et al. (2006). For a related quinoline complex, see: Pan & Xu (2004). For the metal atomic deviation from the basal coordination plane in square-pyramidal coordination geometry, see: Xie & Xu (2005). For the Cu⋯Cu distance in a polymeric CuII complex, see: Li et al. (2007).graphic file with name e-65-0m881-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C2H3O2)4(C9H7N)2]

  • M r = 621.57

  • Monoclinic, Inline graphic

  • a = 12.2278 (3) Å

  • b = 8.1610 (2) Å

  • c = 13.5309 (4) Å

  • β = 103.827 (8)°

  • V = 1311.13 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 294 K

  • 0.28 × 0.26 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.635, T max = 0.720

  • 12480 measured reflections

  • 2997 independent reflections

  • 2638 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.074

  • S = 1.06

  • 2997 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025732/bq2151sup1.cif

e-65-0m881-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025732/bq2151Isup2.hkl

e-65-0m881-Isup2.hkl (144.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu—N1 2.1789 (15)
Cu—O1 1.9771 (13)
Cu—O2i 1.9728 (13)
Cu—O3 1.9777 (13)
Cu—O4i 1.9740 (13)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its crystal structure is reported here.

The molecular structure is shown in Fig. 1. The CuII cation is coordinated by four O atoms from four acetate anions in the basal plane, an isoquinoline molecule coordinates to the CuII cation in the apical position to complete the distorted square-pyramidal coordination geometry. The CuII cation is 0.1681 (6) Å deviated from the basal coordination plane, which is consistent with the situation found in complexes with square-pyramidal coordination geometry (Xie & Xu, 2005). The Cu—N bond in the apical direction is longer than Cu—O bonds in the basal plane by ca 0.2 Å, showing the typical Jahn-Teller distortion. Each acetate anion bridges two CuII cations to form the centro-symmetric dinuclear complex. Within the dinuclear molecule the Cu···Cu separation is 2.6459 (4) Å, similar to 2.642 Å found in a polymeric CuII complex bridged by thiourea (Li et al. 2007).

The parallel arrangement of isoquinoline ligands of adjacent complexes is observed in the crystal structure (Fig. 2). The face-to-face distance of 3.610 (10) Å is close to 3.573 (5) Å found in a quinoline complex (Pan & Xu, 2004) and suggests no π-π stacking between isoquinoline ring systems.

Experimental

A water-ethanol solution (10 ml, 1:2) of isoquinoline (0.12 ml, 1 mmol) and copper acetate monohydrate (0.10 g, 0.5 mmol) was refluxed for 2.5 h. After cooling to room temperature the solution was filtered. The single crystals of the title compound were obtained from the filtrate after 3 d.

Refinement

Methyl H atoms were equally disordered over two sites with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms). The disordered methyl H atoms are not shown for clarify [symmetry code: (i) 1 - x, 1 - y, 1 - z].

Fig. 2.

Fig. 2.

The unit cell packing diagram showing the parallel arrangement of isoquinoline ligands.

Crystal data

[Cu2(C2H3O2)4(C9H7N)2] F(000) = 636
Mr = 621.57 Dx = 1.574 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 10519 reflections
a = 12.2278 (3) Å θ = 3.0–25.5°
b = 8.1610 (2) Å µ = 1.67 mm1
c = 13.5309 (4) Å T = 294 K
β = 103.827 (8)° Chunk, blue
V = 1311.13 (7) Å3 0.28 × 0.26 × 0.20 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID IP diffractometer 2997 independent reflections
Radiation source: fine-focus sealed tube 2638 reflections with I > 2σ(I)
graphite Rint = 0.024
Detector resolution: 10.0 pixels mm-1 θmax = 27.4°, θmin = 3.0°
ω scans h = −15→15
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −10→10
Tmin = 0.635, Tmax = 0.720 l = −17→17
12480 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.4143P] where P = (Fo2 + 2Fc2)/3
2997 reflections (Δ/σ)max = 0.001
172 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu 0.411018 (16) 0.55776 (2) 0.528203 (14) 0.03074 (9)
N1 0.26051 (12) 0.65641 (18) 0.56603 (11) 0.0360 (3)
O1 0.32898 (12) 0.45444 (18) 0.39965 (11) 0.0457 (3)
O2 0.47861 (11) 0.35876 (18) 0.35131 (10) 0.0453 (3)
O3 0.43805 (12) 0.75437 (16) 0.45194 (11) 0.0451 (3)
O4 0.58673 (12) 0.65621 (17) 0.40330 (11) 0.0457 (3)
C1 0.16249 (15) 0.6461 (2) 0.49949 (14) 0.0378 (4)
H1 0.1593 0.5883 0.4396 0.045*
C2 −0.04146 (17) 0.7044 (3) 0.43993 (16) 0.0496 (5)
H2 −0.0450 0.6483 0.3794 0.060*
C3 −0.13598 (18) 0.7741 (3) 0.4580 (2) 0.0576 (6)
H3 −0.2040 0.7653 0.4096 0.069*
C4 −0.13180 (19) 0.8585 (3) 0.5482 (2) 0.0595 (6)
H4 −0.1972 0.9052 0.5593 0.071*
C5 −0.03322 (19) 0.8738 (3) 0.62062 (18) 0.0547 (5)
H5 −0.0318 0.9312 0.6803 0.066*
C6 0.17226 (17) 0.8114 (3) 0.67579 (15) 0.0476 (5)
H6 0.1791 0.8668 0.7370 0.057*
C7 0.26360 (16) 0.7388 (3) 0.65421 (14) 0.0428 (4)
H7 0.3320 0.7457 0.7022 0.051*
C8 0.06221 (15) 0.7172 (2) 0.51336 (14) 0.0364 (4)
C9 0.06649 (16) 0.8026 (2) 0.60497 (14) 0.0395 (4)
C10 0.37462 (16) 0.3780 (2) 0.34010 (13) 0.0365 (4)
C11 0.2983 (2) 0.3021 (3) 0.24755 (17) 0.0588 (6)
H11A 0.3428 0.2473 0.2081 0.088* 0.50
H11B 0.2540 0.3861 0.2071 0.088* 0.50
H11C 0.2493 0.2244 0.2685 0.088* 0.50
H11D 0.2213 0.3245 0.2477 0.088* 0.50
H11E 0.3101 0.1857 0.2487 0.088* 0.50
H11F 0.3148 0.3474 0.1873 0.088* 0.50
C12 0.51710 (15) 0.7661 (2) 0.40790 (13) 0.0361 (4)
C13 0.5292 (2) 0.9275 (3) 0.3568 (2) 0.0589 (6)
H13A 0.4710 1.0012 0.3656 0.088* 0.50
H13B 0.5226 0.9096 0.2855 0.088* 0.50
H13C 0.6015 0.9742 0.3869 0.088* 0.50
H13D 0.5924 0.9221 0.3264 0.088* 0.50
H13E 0.5408 1.0137 0.4065 0.088* 0.50
H13F 0.4619 0.9491 0.3051 0.088* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.02788 (12) 0.03427 (13) 0.03091 (13) 0.00155 (8) 0.00869 (8) −0.00023 (8)
N1 0.0332 (7) 0.0399 (8) 0.0368 (7) 0.0025 (6) 0.0117 (6) 0.0014 (6)
O1 0.0362 (7) 0.0574 (9) 0.0413 (7) −0.0006 (6) 0.0050 (6) −0.0134 (6)
O2 0.0393 (7) 0.0568 (9) 0.0388 (7) 0.0013 (6) 0.0074 (5) −0.0118 (6)
O3 0.0476 (8) 0.0401 (7) 0.0518 (8) 0.0056 (6) 0.0203 (6) 0.0090 (6)
O4 0.0450 (7) 0.0423 (7) 0.0554 (8) 0.0042 (6) 0.0231 (6) 0.0123 (6)
C1 0.0375 (9) 0.0428 (10) 0.0346 (9) 0.0026 (8) 0.0114 (7) −0.0010 (7)
C2 0.0396 (10) 0.0552 (12) 0.0504 (11) 0.0017 (9) 0.0034 (9) −0.0025 (9)
C3 0.0337 (10) 0.0629 (14) 0.0717 (15) 0.0037 (10) 0.0040 (10) 0.0051 (12)
C4 0.0389 (11) 0.0697 (15) 0.0745 (15) 0.0144 (11) 0.0224 (11) 0.0079 (12)
C5 0.0492 (12) 0.0660 (14) 0.0549 (12) 0.0133 (11) 0.0242 (10) −0.0007 (11)
C6 0.0470 (11) 0.0602 (12) 0.0369 (9) 0.0062 (10) 0.0124 (8) −0.0086 (9)
C7 0.0355 (9) 0.0547 (11) 0.0377 (9) 0.0015 (9) 0.0076 (7) −0.0045 (8)
C8 0.0336 (9) 0.0371 (9) 0.0396 (9) 0.0004 (7) 0.0112 (7) 0.0056 (7)
C9 0.0376 (9) 0.0432 (10) 0.0408 (9) 0.0048 (8) 0.0152 (8) 0.0041 (8)
C10 0.0397 (9) 0.0368 (9) 0.0304 (8) −0.0032 (8) 0.0032 (7) 0.0001 (7)
C11 0.0534 (13) 0.0723 (15) 0.0437 (11) −0.0073 (11) −0.0021 (9) −0.0175 (11)
C12 0.0378 (9) 0.0343 (9) 0.0349 (8) −0.0040 (8) 0.0059 (7) 0.0025 (7)
C13 0.0721 (16) 0.0412 (11) 0.0687 (15) −0.0020 (10) 0.0271 (13) 0.0150 (10)

Geometric parameters (Å, °)

Cu—N1 2.1789 (15) C4—H4 0.9300
Cu—O1 1.9771 (13) C5—C9 1.412 (3)
Cu—O2i 1.9728 (13) C5—H5 0.9300
Cu—O3 1.9777 (13) C6—C7 1.356 (3)
Cu—O4i 1.9740 (13) C6—C9 1.416 (3)
Cu—Cui 2.6459 (4) C6—H6 0.9300
N1—C1 1.318 (2) C7—H7 0.9300
N1—C7 1.362 (2) C8—C9 1.412 (3)
O1—C10 1.251 (2) C10—C11 1.505 (3)
O2—C10 1.254 (2) C11—H11A 0.9600
O2—Cui 1.9728 (13) C11—H11B 0.9600
O3—C12 1.255 (2) C11—H11C 0.9600
O4—C12 1.249 (2) C11—H11D 0.9600
O4—Cui 1.9740 (13) C11—H11E 0.9600
C1—C8 1.409 (3) C11—H11F 0.9600
C1—H1 0.9300 C12—C13 1.510 (3)
C2—C3 1.362 (3) C13—H13A 0.9600
C2—C8 1.415 (3) C13—H13B 0.9600
C2—H2 0.9300 C13—H13C 0.9600
C3—C4 1.391 (3) C13—H13D 0.9600
C3—H3 0.9300 C13—H13E 0.9600
C4—C5 1.366 (3) C13—H13F 0.9600
O2i—Cu—O4i 89.28 (6) O1—C10—O2 125.47 (17)
O2i—Cu—O1 167.80 (6) O1—C10—C11 117.25 (18)
O4i—Cu—O1 89.03 (6) O2—C10—C11 117.28 (18)
O2i—Cu—O3 89.10 (6) C10—C11—H11A 109.5
O4i—Cu—O3 167.77 (6) C10—C11—H11B 109.5
O1—Cu—O3 90.00 (6) H11A—C11—H11B 109.5
O2i—Cu—N1 97.34 (6) C10—C11—H11C 109.5
O4i—Cu—N1 97.72 (6) H11A—C11—H11C 109.5
O1—Cu—N1 94.86 (6) H11B—C11—H11C 109.5
O3—Cu—N1 94.51 (6) C10—C11—H11D 109.5
O2i—Cu—Cui 85.07 (4) H11A—C11—H11D 141.1
O4i—Cu—Cui 84.27 (4) H11B—C11—H11D 56.3
O1—Cu—Cui 82.74 (4) H11C—C11—H11D 56.3
O3—Cu—Cui 83.51 (4) C10—C11—H11E 109.5
N1—Cu—Cui 176.88 (4) H11A—C11—H11E 56.3
C1—N1—C7 117.39 (16) H11B—C11—H11E 141.1
C1—N1—Cu 119.81 (12) H11C—C11—H11E 56.3
C7—N1—Cu 122.68 (12) H11D—C11—H11E 109.5
C10—O1—Cu 124.66 (12) C10—C11—H11F 109.5
C10—O2—Cui 122.03 (12) H11A—C11—H11F 56.3
C12—O3—Cu 123.63 (12) H11B—C11—H11F 56.3
C12—O4—Cui 123.05 (12) H11C—C11—H11F 141.1
N1—C1—C8 124.11 (17) H11D—C11—H11F 109.5
N1—C1—H1 117.9 H11E—C11—H11F 109.5
C8—C1—H1 117.9 O4—C12—O3 125.49 (17)
C3—C2—C8 119.9 (2) O4—C12—C13 117.46 (18)
C3—C2—H2 120.0 O3—C12—C13 117.04 (18)
C8—C2—H2 120.0 C12—C13—H13A 109.5
C2—C3—C4 120.6 (2) C12—C13—H13B 109.5
C2—C3—H3 119.7 H13A—C13—H13B 109.5
C4—C3—H3 119.7 C12—C13—H13C 109.5
C5—C4—C3 121.1 (2) H13A—C13—H13C 109.5
C5—C4—H4 119.5 H13B—C13—H13C 109.5
C3—C4—H4 119.5 C12—C13—H13D 109.5
C4—C5—C9 120.0 (2) H13A—C13—H13D 141.1
C4—C5—H5 120.0 H13B—C13—H13D 56.3
C9—C5—H5 120.0 H13C—C13—H13D 56.3
C7—C6—C9 119.90 (18) C12—C13—H13E 109.5
C7—C6—H6 120.1 H13A—C13—H13E 56.3
C9—C6—H6 120.1 H13B—C13—H13E 141.1
C6—C7—N1 123.52 (17) H13C—C13—H13E 56.3
C6—C7—H7 118.2 H13D—C13—H13E 109.5
N1—C7—H7 118.2 C12—C13—H13F 109.5
C1—C8—C9 117.99 (16) H13A—C13—H13F 56.3
C1—C8—C2 122.54 (17) H13B—C13—H13F 56.3
C9—C8—C2 119.46 (17) H13C—C13—H13F 141.1
C8—C9—C5 118.87 (18) H13D—C13—H13F 109.5
C8—C9—C6 117.09 (17) H13E—C13—H13F 109.5
C5—C9—C6 124.04 (19)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2151).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Clegg, W. & Straughan, B. P. (1989). Acta Cryst. C45, 1992–1994.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Ivanikova, R., Boca, R., Dlhan, L., Fuess, H., Maslejova, A., Mrazova, V., Svoboda, I. & Titis, J. (2006). Polyhedron, 25, 3261–3268.
  7. Li, D.-X., Xu, D.-J. & Xu, Y.-Z. (2007). J. Coord. Chem.60, 2687–2694.
  8. Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.
  9. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem.57, 223–229.
  13. Xie, A.-L. & Xu, D.-J. (2005). J. Coord. Chem.58, 225–230.
  14. Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025732/bq2151sup1.cif

e-65-0m881-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025732/bq2151Isup2.hkl

e-65-0m881-Isup2.hkl (144.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES