Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 11;65(Pt 8):o1849. doi: 10.1107/S1600536809025604

tert-Butyl N-{4-methyl-3-[4-(3-pyrid­yl)pyrimidin-2-yl­oxy]phen­yl}carbamate

Shi-Gui Tang a, Jian-Qiang Wang a, Cheng Guo a,*
PMCID: PMC2977178  PMID: 21583549

Abstract

In the mol­ecule of the title compound, C21H22N4O3, the pyrimidine ring is oriented at dihedral angles of 0.51 (3) and 50.76 (3)° to the pyridine and benzene rings, respectively. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers, forming R 2 2(24) ring motifs; the dimers are linked by inter­molecular C—H⋯O hydrogen bonds into a two-dimensional network. π–π contacts between the benzene rings and between the pyrimidine and pyridine rings [centroid–centroid distances = 3.891 (1) and 3.646 (1) Å, respectively] may further stabilize the structure. Two weak C—H⋯π inter­actions are also present.

Related literature

For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995).graphic file with name e-65-o1849-scheme1.jpg

Experimental

Crystal data

  • C21H22N4O3

  • M r = 378.43

  • Triclinic, Inline graphic

  • a = 9.951 (2) Å

  • b = 10.733 (2) Å

  • c = 11.577 (2) Å

  • α = 114.74 (3)°

  • β = 107.14 (3)°

  • γ = 99.97 (3)°

  • V = 1008.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.975, T max = 0.992

  • 3882 measured reflections

  • 3652 independent reflections

  • 2333 reflections with I > 2σ(I)

  • R int = 0.026

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.184

  • S = 1.01

  • 3652 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025604/hk2725sup1.cif

e-65-o1849-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025604/hk2725Isup2.hkl

e-65-o1849-Isup2.hkl (179KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4i 0.86 2.10 2.944 (4) 165
C15—H15A⋯O2ii 0.93 2.45 3.382 (4) 177
C18—H18A⋯O2ii 0.93 2.39 3.319 (4) 174
C3—H3BCg1i 0.96 2.86 3.560 (3) 131
C12—H12BCg2iii 0.96 2.90 3.788 (3) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 and Cg2 are the centroids of the C6–C11 and N2/N3/C13–C16 rings, respectively.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of phenol are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C6-C11), B (N2/N3/C13-C16) and C (N4/C17-C21) are, of course, planar and the dihedral angles between them are A/B = 50.76 (3), A/C = 50.58 (3) and B/C = 0.51 (3) °.

In the crystal structure, intermolecular N-H···N hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers forming R22(24) ring motifs (Bernstein et al., 1995), and then intermolecular C-H···O hydrogen bonds (Table 1) link them into a two dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contacts between the phenyl rings and between the pyrimidine and the pyridine rings, Cg1—Cg1i and Cg2—Cg3ii [symmetry codes: (i) 1 - x, 2 - y, 1 - z, (ii) -x, 1 - y, 1 - z, where Cg1, Cg2 and Cg3 are centroids of the rings A (C6-C11), B (N2/N3/C13-C16) and C (N4/C17-C21), respectively] may further stabilize the structure, with centroid-centroid distances of 3.891 (1) and 3.646 (1) Å, respectively. There also exist two weak C—H···π interactions (Table 1).

Experimental

To a mixture of 2-(methylsulfonyl)-4-(pyridin-3-yl)pyrimidine (47.1 g, 0.2 mol) in DMF (75 ml) and tert-butyl-3-hydroxy-4-methylphenylcarbamate (44.7 g, 0.2 mol) in DMF (150 ml) was added sodium hydride (44.4 g) slowly and was stirred for 18 h at room temperature. After acidified with citric acid the reaction mixture was poured into ice-water (2000 ml). The precipitate was filtered, washed with water and was extracted with dichloromethane.The dichloromethane layer was dried over anhydrous magnesium sulfate and evaporated in vacuo. The residue was recrystallized from ethyl ether to give the title compound (yield; 73.4 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C21H22N4O3 Z = 2
Mr = 378.43 F(000) = 400
Triclinic, P1 Dx = 1.246 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.951 (2) Å Cell parameters from 25 reflections
b = 10.733 (2) Å θ = 9–13°
c = 11.577 (2) Å µ = 0.09 mm1
α = 114.74 (3)° T = 294 K
β = 107.14 (3)° Block, colorless
γ = 99.97 (3)° 0.30 × 0.20 × 0.10 mm
V = 1008.6 (6) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 2333 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
graphite θmax = 25.3°, θmin = 2.1°
ω/2θ scans h = 0→11
Absorption correction: ψ scan (North et al., 1968) k = −12→12
Tmin = 0.975, Tmax = 0.992 l = −13→13
3882 measured reflections 3 standard reflections every 120 min
3652 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058 H-atom parameters constrained
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.1P)2 + 0.07P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
3652 reflections Δρmax = 0.29 e Å3
254 parameters Δρmin = −0.27 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.033 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.0153 (2) 0.8866 (2) 0.2102 (2) 0.0600 (6)
O2 0.0613 (2) 0.7528 (2) 0.3167 (2) 0.0719 (7)
O3 0.4840 (2) 0.8449 (2) 0.7311 (2) 0.0594 (6)
N1 0.2087 (2) 0.9880 (2) 0.4085 (2) 0.0498 (6)
H1A 0.2141 1.0599 0.3929 0.060*
N2 0.2426 (2) 0.7463 (2) 0.7031 (2) 0.0429 (5)
N3 0.4351 (3) 0.6437 (3) 0.7463 (3) 0.0574 (7)
N4 −0.1874 (3) 0.7568 (2) 0.6228 (3) 0.0567 (7)
C1 −0.1644 (4) 0.8538 (4) 0.0096 (4) 0.0910 (12)
H1B −0.1731 0.9458 0.0640 0.136*
H1C −0.2570 0.7920 −0.0708 0.136*
H1D −0.0855 0.8694 −0.0200 0.136*
C2 −0.1138 (4) 0.6358 (4) 0.0150 (4) 0.0862 (11)
H2B −0.0922 0.5919 0.0724 0.129*
H2C −0.0339 0.6503 −0.0136 0.129*
H2D −0.2057 0.5727 −0.0659 0.129*
C3 −0.2421 (4) 0.7685 (5) 0.1575 (4) 0.0929 (12)
H3B −0.2485 0.8630 0.2080 0.139*
H3C −0.2119 0.7312 0.2196 0.139*
H3D −0.3381 0.7032 0.0834 0.139*
C4 −0.1288 (3) 0.7813 (3) 0.0971 (3) 0.0550 (8)
C5 0.0919 (3) 0.8649 (3) 0.3128 (3) 0.0490 (7)
C6 0.3229 (3) 1.0147 (3) 0.5304 (3) 0.0417 (6)
C7 0.4275 (3) 1.1551 (3) 0.6155 (3) 0.0515 (7)
H7A 0.4202 1.2258 0.5898 0.062*
C8 0.5415 (3) 1.1899 (3) 0.7372 (3) 0.0573 (8)
H8A 0.6102 1.2844 0.7926 0.069*
C9 0.5577 (3) 1.0880 (3) 0.7807 (3) 0.0505 (7)
C10 0.4535 (3) 0.9502 (3) 0.6937 (3) 0.0449 (6)
C11 0.3367 (3) 0.9096 (3) 0.5703 (3) 0.0459 (7)
H11A 0.2689 0.8147 0.5150 0.055*
C12 0.6828 (4) 1.1258 (4) 0.9146 (3) 0.0766 (10)
H12A 0.6742 1.0413 0.9256 0.115*
H12B 0.6764 1.2028 0.9920 0.115*
H12C 0.7773 1.1573 0.9114 0.115*
C13 0.3789 (3) 0.7420 (3) 0.7256 (3) 0.0446 (6)
C14 0.3369 (3) 0.5396 (3) 0.7410 (3) 0.0610 (8)
H14A 0.3692 0.4692 0.7562 0.073*
C15 0.1907 (3) 0.5281 (3) 0.7147 (3) 0.0569 (8)
H15A 0.1244 0.4510 0.7090 0.068*
C16 0.1453 (3) 0.6373 (3) 0.6967 (2) 0.0404 (6)
C17 −0.0094 (3) 0.6389 (3) 0.6684 (3) 0.0404 (6)
C18 −0.1188 (3) 0.5330 (3) 0.6602 (3) 0.0507 (7)
H18A −0.0970 0.4574 0.6725 0.061*
C19 −0.2597 (3) 0.5405 (3) 0.6339 (3) 0.0571 (8)
H19A −0.3347 0.4697 0.6277 0.068*
C20 −0.2896 (3) 0.6538 (3) 0.6167 (3) 0.0525 (7)
H20A −0.3854 0.6584 0.6000 0.063*
C21 −0.0505 (3) 0.7479 (3) 0.6477 (3) 0.0519 (7)
H21A 0.0217 0.8189 0.6514 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0613 (12) 0.0482 (11) 0.0602 (12) 0.0112 (10) 0.0039 (10) 0.0353 (10)
O2 0.0703 (14) 0.0469 (12) 0.0834 (15) 0.0087 (10) 0.0013 (12) 0.0443 (11)
O3 0.0419 (11) 0.0666 (13) 0.0880 (15) 0.0232 (10) 0.0201 (10) 0.0567 (12)
N1 0.0556 (14) 0.0365 (12) 0.0589 (14) 0.0166 (11) 0.0147 (12) 0.0307 (11)
N2 0.0440 (13) 0.0406 (12) 0.0466 (13) 0.0166 (10) 0.0146 (10) 0.0258 (10)
N3 0.0573 (15) 0.0581 (15) 0.0733 (17) 0.0319 (13) 0.0248 (13) 0.0435 (14)
N4 0.0489 (14) 0.0506 (14) 0.0806 (18) 0.0231 (12) 0.0241 (13) 0.0406 (14)
C1 0.089 (3) 0.086 (3) 0.079 (2) 0.018 (2) 0.000 (2) 0.053 (2)
C2 0.101 (3) 0.064 (2) 0.071 (2) 0.030 (2) 0.023 (2) 0.0216 (19)
C3 0.068 (2) 0.119 (3) 0.106 (3) 0.039 (2) 0.037 (2) 0.066 (3)
C4 0.0508 (17) 0.0516 (17) 0.0580 (18) 0.0161 (14) 0.0135 (15) 0.0299 (15)
C5 0.0509 (16) 0.0428 (15) 0.0578 (17) 0.0181 (13) 0.0175 (14) 0.0313 (14)
C6 0.0423 (14) 0.0407 (14) 0.0512 (16) 0.0192 (12) 0.0210 (13) 0.0275 (13)
C7 0.0546 (17) 0.0417 (15) 0.0616 (18) 0.0178 (13) 0.0215 (15) 0.0296 (14)
C8 0.0544 (17) 0.0427 (16) 0.0601 (18) 0.0088 (13) 0.0149 (15) 0.0219 (14)
C9 0.0457 (15) 0.0533 (17) 0.0540 (17) 0.0176 (14) 0.0182 (13) 0.0293 (14)
C10 0.0398 (14) 0.0521 (16) 0.0591 (17) 0.0218 (13) 0.0230 (13) 0.0375 (14)
C11 0.0455 (15) 0.0396 (14) 0.0556 (17) 0.0150 (12) 0.0194 (13) 0.0271 (13)
C12 0.066 (2) 0.079 (2) 0.065 (2) 0.0115 (18) 0.0066 (17) 0.0370 (19)
C13 0.0442 (15) 0.0469 (15) 0.0458 (15) 0.0180 (12) 0.0138 (12) 0.0278 (13)
C14 0.064 (2) 0.0559 (18) 0.086 (2) 0.0355 (16) 0.0306 (17) 0.0495 (18)
C15 0.0608 (19) 0.0468 (16) 0.078 (2) 0.0229 (14) 0.0281 (16) 0.0424 (16)
C16 0.0502 (15) 0.0341 (13) 0.0380 (14) 0.0169 (12) 0.0157 (12) 0.0193 (11)
C17 0.0445 (15) 0.0343 (13) 0.0423 (14) 0.0150 (11) 0.0142 (12) 0.0210 (11)
C18 0.0527 (17) 0.0448 (15) 0.0610 (18) 0.0179 (13) 0.0187 (14) 0.0343 (14)
C19 0.0512 (17) 0.0516 (17) 0.072 (2) 0.0109 (14) 0.0213 (15) 0.0392 (16)
C20 0.0439 (15) 0.0542 (17) 0.0623 (18) 0.0186 (13) 0.0200 (14) 0.0321 (15)
C21 0.0466 (16) 0.0412 (15) 0.073 (2) 0.0157 (12) 0.0196 (14) 0.0363 (15)

Geometric parameters (Å, °)

O1—C4 1.463 (3) C6—C7 1.391 (4)
O1—C5 1.344 (3) C6—C11 1.399 (3)
O2—C5 1.211 (3) C7—C8 1.373 (4)
O3—C10 1.418 (3) C7—H7A 0.9300
O3—C13 1.349 (3) C8—C9 1.396 (4)
N1—C5 1.345 (3) C8—H8A 0.9300
N1—C6 1.403 (3) C9—C10 1.372 (4)
N1—H1A 0.8600 C9—C12 1.509 (4)
N3—C13 1.349 (3) C10—C11 1.380 (4)
N3—C14 1.318 (4) C11—H11A 0.9300
N4—C20 1.327 (3) C12—H12A 0.9600
N4—C21 1.336 (3) C12—H12B 0.9600
C1—C4 1.518 (4) C12—H12C 0.9600
C1—H1B 0.9600 C14—C15 1.367 (4)
C1—H1C 0.9600 C14—H14A 0.9300
C1—H1D 0.9600 C15—C16 1.397 (3)
N2—C13 1.317 (3) C15—H15A 0.9300
N2—C16 1.344 (3) C16—C17 1.482 (4)
C2—C4 1.512 (4) C17—C18 1.380 (4)
C2—H2B 0.9600 C17—C21 1.391 (3)
C2—H2C 0.9600 C18—C19 1.368 (4)
C2—H2D 0.9600 C18—H18A 0.9300
C3—C4 1.507 (5) C19—C20 1.379 (4)
C3—H3B 0.9600 C19—H19A 0.9300
C3—H3C 0.9600 C20—H20A 0.9300
C3—H3D 0.9600 C21—H21A 0.9300
C5—O1—C4 122.7 (2) C9—C8—H8A 118.9
C13—O3—C10 123.90 (19) C10—C9—C8 116.0 (3)
C5—N1—C6 128.6 (2) C10—C9—C12 121.7 (3)
C5—N1—H1A 115.7 C8—C9—C12 122.3 (3)
C6—N1—H1A 115.7 C9—C10—C11 124.2 (2)
C13—N2—C16 116.2 (2) C9—C10—O3 114.6 (2)
C14—N3—C13 113.6 (2) C11—C10—O3 120.9 (2)
C4—C1—H1B 109.5 C10—C11—C6 118.4 (2)
C4—C1—H1C 109.5 C10—C11—H11A 120.8
H1B—C1—H1C 109.5 C6—C11—H11A 120.8
C4—C1—H1D 109.5 C9—C12—H12A 109.5
H1B—C1—H1D 109.5 C9—C12—H12B 109.5
H1C—C1—H1D 109.5 H12A—C12—H12B 109.5
C4—C2—H2B 109.5 C9—C12—H12C 109.5
C4—C2—H2C 109.5 H12A—C12—H12C 109.5
H2B—C2—H2C 109.5 H12B—C12—H12C 109.5
C4—C2—H2D 109.5 N2—C13—O3 120.7 (2)
H2B—C2—H2D 109.5 N2—C13—N3 128.4 (3)
H2C—C2—H2D 109.5 O3—C13—N3 110.9 (2)
C4—C3—H3B 109.5 N3—C14—C15 124.3 (3)
C4—C3—H3C 109.5 N3—C14—H14A 117.8
H3B—C3—H3C 109.5 C15—C14—H14A 117.8
C4—C3—H3D 109.5 C14—C15—C16 117.1 (3)
H3B—C3—H3D 109.5 C14—C15—H15A 121.4
H3C—C3—H3D 109.5 C16—C15—H15A 121.4
C20—N4—C21 117.2 (2) N2—C16—C15 120.4 (2)
O1—C4—C3 109.0 (3) N2—C16—C17 116.8 (2)
O1—C4—C2 110.8 (2) C15—C16—C17 122.8 (2)
C3—C4—C2 112.3 (3) C18—C17—C21 117.2 (2)
O1—C4—C1 102.0 (2) C18—C17—C16 122.0 (2)
C3—C4—C1 111.1 (3) C21—C17—C16 120.8 (2)
C2—C4—C1 111.1 (3) C19—C18—C17 119.3 (2)
O2—C5—O1 125.6 (3) C19—C18—H18A 120.3
O2—C5—N1 126.3 (3) C17—C18—H18A 120.3
O1—C5—N1 108.1 (2) C18—C19—C20 119.4 (3)
C7—C6—C11 118.9 (2) C18—C19—H19A 120.3
C7—C6—N1 117.0 (2) C20—C19—H19A 120.3
C11—C6—N1 124.0 (2) N4—C20—C19 122.8 (3)
C8—C7—C6 120.3 (3) N4—C20—H20A 118.6
C8—C7—H7A 119.8 C19—C20—H20A 118.6
C6—C7—H7A 119.8 N4—C21—C17 124.0 (2)
C7—C8—C9 122.2 (3) N4—C21—H21A 118.0
C7—C8—H8A 118.9 C17—C21—H21A 118.0
C5—O1—C4—C3 64.0 (3) C16—N2—C13—O3 178.7 (2)
C5—O1—C4—C2 −60.1 (4) C16—N2—C13—N3 −1.6 (4)
C5—O1—C4—C1 −178.5 (3) C10—O3—C13—N2 −9.7 (4)
C4—O1—C5—O2 8.5 (5) C10—O3—C13—N3 170.6 (2)
C4—O1—C5—N1 −172.4 (2) C14—N3—C13—N2 0.8 (4)
C6—N1—C5—O2 2.1 (5) C14—N3—C13—O3 −179.5 (2)
C6—N1—C5—O1 −177.0 (2) C13—N3—C14—C15 1.1 (5)
C5—N1—C6—C7 −177.0 (3) N3—C14—C15—C16 −2.0 (5)
C5—N1—C6—C11 2.9 (4) C13—N2—C16—C15 0.5 (4)
C11—C6—C7—C8 −0.6 (4) C13—N2—C16—C17 −178.7 (2)
N1—C6—C7—C8 179.3 (3) C14—C15—C16—N2 1.1 (4)
C6—C7—C8—C9 0.0 (5) C14—C15—C16—C17 −179.7 (3)
C7—C8—C9—C10 0.6 (4) N2—C16—C17—C18 −179.7 (2)
C7—C8—C9—C12 −179.9 (3) C15—C16—C17—C18 1.1 (4)
C8—C9—C10—C11 −0.7 (4) N2—C16—C17—C21 0.9 (4)
C12—C9—C10—C11 179.9 (3) C15—C16—C17—C21 −178.3 (3)
C8—C9—C10—O3 172.1 (2) C21—C17—C18—C19 −0.6 (4)
C12—C9—C10—O3 −7.3 (4) C16—C17—C18—C19 180.0 (2)
C13—O3—C10—C9 138.8 (3) C17—C18—C19—C20 −0.3 (4)
C13—O3—C10—C11 −48.2 (4) C21—N4—C20—C19 −0.4 (4)
C9—C10—C11—C6 0.1 (4) C18—C19—C20—N4 0.8 (5)
O3—C10—C11—C6 −172.3 (2) C20—N4—C21—C17 −0.6 (4)
C7—C6—C11—C10 0.6 (4) C18—C17—C21—N4 1.1 (4)
N1—C6—C11—C10 −179.3 (2) C16—C17—C21—N4 −179.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N4i 0.86 2.10 2.944 (4) 165
C15—H15A···O2ii 0.93 2.45 3.382 (4) 177
C18—H18A···O2ii 0.93 2.39 3.319 (4) 174
C3—H3B···Cg1i 0.96 2.86 3.560 (3) 131
C12—H12B···Cg2iii 0.96 2.90 3.788 (3) 154

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2725).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025604/hk2725sup1.cif

e-65-o1849-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025604/hk2725Isup2.hkl

e-65-o1849-Isup2.hkl (179KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES