Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 31;65(Pt 8):o2042. doi: 10.1107/S1600536809029468

4,6,7,9,10,12,13,15-Octa­hydro-2H-1,3-dithiolo[4,5-i][1,4,7,12]dioxadithia­cyclo­tetra­decine-2-thione

Rui-Bin Hou a, Bao Li b, Tie Chen a, Bing-Zhu Yin a,*, Li-Xin Wu b
PMCID: PMC2977179  PMID: 21583706

Abstract

In the title mol­ecule, C11H16O2S5, the two S atoms from the macrocycle are situated on opposite sides of the mean plane of the five-membered ring, deviating from it by 1.288 (3) and 1.728 (3) Å. In the crystal, weak inter­molecular C—H⋯S and C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to (100). The crystal studied was a racemic twin.

Related literature

For crown ether annulated 1,3-dithiol-2-thio­nes, see: Hansen et al. (1992); Trippé et al. (2002). For details of the synthesis, see: Chen et al. (2005). For a related structure, see: Hou et al. (2009)graphic file with name e-65-o2042-scheme1.jpg

Experimental

Crystal data

  • C11H16O2S5

  • M r = 340.54

  • Monoclinic, Inline graphic

  • a = 8.9201 (18) Å

  • b = 8.5317 (17) Å

  • c = 10.128 (2) Å

  • β = 97.00 (3)°

  • V = 765.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 291 K

  • 0.13 × 0.12 × 0.11 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.909, T max = 0.922

  • 7527 measured reflections

  • 3221 independent reflections

  • 3100 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.088

  • S = 1.06

  • 3221 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983); 1359 Friedel pairs

  • Flack parameter: 0.42 (9)

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029468/cv2592sup1.cif

e-65-o2042-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029468/cv2592Isup2.hkl

e-65-o2042-Isup2.hkl (158KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯S1i 0.97 2.86 3.695 (3) 145
C10—H10A⋯O2ii 0.97 2.51 3.317 (3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supramolecular Structure and Materials, Jilin University.

supplementary crystallographic information

Comment

In the context of redox-responsive ligands, TTF is an ideal redox-active unit in view of its unique π-electron donating properties. Attachment of ligands such as crown ethers to TTF in many cases results in the electrochemical tunable ligands (Trippé et al., 2002). Crowned 1,3-dithiole-2-thiones, important precursors to TTF derivatives, have also attracted attention (Hansen et al., 1992). In this paper, we report the crystal structure of the title compound.

In the title compound (Fig. 1), all bond lengths and angles are normal and comparable with those reported for the related structure (Hou et al., 2009). In the crystal, weak intermolecular C—H···S and C—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to (a+c)b plane.

Experimental

The title compound was prepared according to the literature (Chen et al., 2005) and single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromthane and petroleum (60–90 °C) at room temperatue.

Refinement

Carbon-bound H-atoms were placed in calculated positions with C—H 0.97 Å and were included in the refinement in the riding model with Uiso(H) = 1.2 Ueq(C). The refined value of Flack parameter of 0.42 (9) suggests that the crystal studied was a racemic twin.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atomic numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.

Crystal data

C11H16O2S5 F(000) = 356
Mr = 340.54 Dx = 1.478 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 7211 reflections
a = 8.9201 (18) Å θ = 3.1–27.5°
b = 8.5317 (17) Å µ = 0.75 mm1
c = 10.128 (2) Å T = 291 K
β = 97.00 (3)° Block, yellow
V = 765.0 (3) Å3 0.13 × 0.12 × 0.11 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer 3221 independent reflections
Radiation source: fine-focus sealed tube 3100 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −11→11
Tmin = 0.909, Tmax = 0.922 k = −11→10
7527 measured reflections l = −13→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.1939P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
3221 reflections Δρmax = 0.58 e Å3
164 parameters Δρmin = −0.22 e Å3
1 restraint Absolute structure: Flack (1983); 1359 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.42 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9104 (3) 0.5403 (4) 1.0514 (2) 0.0344 (5)
C2 0.6930 (2) 0.4126 (3) 0.8914 (2) 0.0264 (5)
C3 0.5748 (3) 0.2952 (3) 0.8447 (2) 0.0342 (5)
H3A 0.6206 0.1920 0.8492 0.041*
H3B 0.5391 0.3164 0.7521 0.041*
C4 0.3178 (3) 0.4733 (4) 0.8901 (3) 0.0406 (6)
H4A 0.2524 0.4990 0.9568 0.049*
H4B 0.3929 0.5556 0.8915 0.049*
C5 0.2242 (3) 0.4741 (4) 0.7555 (3) 0.0445 (7)
H5A 0.1638 0.3795 0.7439 0.053*
H5B 0.1566 0.5637 0.7482 0.053*
C6 0.2480 (3) 0.4848 (4) 0.5262 (3) 0.0426 (6)
H6A 0.1704 0.5650 0.5179 0.051*
H6B 0.2005 0.3842 0.5047 0.051*
C7 0.3637 (3) 0.5190 (4) 0.4329 (3) 0.0418 (6)
H7A 0.3150 0.5253 0.3421 0.050*
H7B 0.4128 0.6185 0.4558 0.050*
C8 0.5855 (3) 0.4162 (4) 0.3590 (3) 0.0427 (7)
H8A 0.5382 0.4495 0.2722 0.051*
H8B 0.6331 0.3156 0.3480 0.051*
C9 0.7060 (3) 0.5337 (4) 0.4090 (3) 0.0470 (7)
H9A 0.6589 0.6351 0.4175 0.056*
H9B 0.7765 0.5438 0.3438 0.056*
C10 0.6889 (3) 0.5696 (4) 0.6801 (2) 0.0381 (6)
H10A 0.6885 0.6826 0.6690 0.046*
H10B 0.5861 0.5322 0.6586 0.046*
C11 0.7448 (2) 0.5293 (3) 0.8207 (2) 0.0290 (5)
O1 0.3233 (2) 0.4825 (3) 0.65686 (18) 0.0432 (5)
O2 0.4715 (2) 0.3969 (2) 0.44464 (17) 0.0385 (4)
S1 1.03598 (9) 0.58767 (12) 1.17933 (8) 0.0558 (2)
S2 0.78149 (7) 0.39272 (8) 1.05411 (6) 0.03282 (15)
S3 0.41352 (8) 0.29178 (9) 0.93755 (8) 0.04456 (18)
S4 0.80970 (8) 0.48036 (12) 0.56811 (7) 0.0539 (2)
S5 0.89230 (7) 0.64009 (8) 0.90156 (7) 0.03733 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0240 (11) 0.0456 (15) 0.0325 (11) 0.0034 (10) −0.0003 (9) −0.0064 (11)
C2 0.0195 (10) 0.0336 (13) 0.0252 (10) 0.0033 (8) −0.0005 (8) −0.0022 (9)
C3 0.0310 (12) 0.0346 (13) 0.0356 (12) 0.0012 (10) −0.0020 (9) −0.0022 (11)
C4 0.0330 (13) 0.0503 (17) 0.0400 (13) 0.0006 (12) 0.0105 (10) −0.0063 (12)
C5 0.0259 (12) 0.0616 (19) 0.0473 (15) 0.0072 (12) 0.0094 (11) 0.0041 (14)
C6 0.0275 (13) 0.0597 (19) 0.0388 (13) 0.0049 (12) −0.0030 (10) 0.0054 (13)
C7 0.0369 (14) 0.0520 (17) 0.0346 (12) 0.0011 (12) −0.0028 (11) 0.0071 (12)
C8 0.0417 (15) 0.0582 (19) 0.0283 (11) −0.0032 (13) 0.0048 (10) 0.0000 (12)
C9 0.0413 (15) 0.069 (2) 0.0313 (12) −0.0104 (14) 0.0065 (11) 0.0044 (13)
C10 0.0318 (13) 0.0507 (16) 0.0315 (12) 0.0060 (11) 0.0028 (10) 0.0054 (11)
C11 0.0184 (10) 0.0390 (13) 0.0292 (11) 0.0012 (9) 0.0020 (8) −0.0002 (10)
O1 0.0233 (8) 0.0716 (14) 0.0349 (9) 0.0071 (9) 0.0045 (7) 0.0047 (9)
O2 0.0346 (10) 0.0433 (11) 0.0377 (9) −0.0016 (8) 0.0049 (7) 0.0018 (9)
S1 0.0336 (4) 0.0887 (7) 0.0416 (4) −0.0110 (4) −0.0092 (3) −0.0101 (4)
S2 0.0298 (3) 0.0407 (3) 0.0267 (3) −0.0002 (2) −0.0015 (2) 0.0031 (2)
S3 0.0319 (3) 0.0508 (4) 0.0507 (4) −0.0110 (3) 0.0041 (3) 0.0134 (3)
S4 0.0314 (3) 0.0975 (7) 0.0325 (3) 0.0086 (4) 0.0027 (3) −0.0032 (4)
S5 0.0254 (3) 0.0466 (4) 0.0399 (3) −0.0089 (3) 0.0031 (2) 0.0025 (3)

Geometric parameters (Å, °)

C1—S1 1.656 (3) C6—H6A 0.9700
C1—S2 1.708 (3) C6—H6B 0.9700
C1—S5 1.730 (3) C7—O2 1.413 (4)
C2—C11 1.341 (4) C7—H7A 0.9700
C2—C3 1.489 (3) C7—H7B 0.9700
C2—S2 1.747 (2) C8—O2 1.424 (3)
C3—S3 1.812 (3) C8—C9 1.511 (4)
C3—H3A 0.9700 C8—H8A 0.9700
C3—H3B 0.9700 C8—H8B 0.9700
C4—C5 1.510 (4) C9—S4 1.815 (3)
C4—S3 1.805 (3) C9—H9A 0.9700
C4—H4A 0.9700 C9—H9B 0.9700
C4—H4B 0.9700 C10—C11 1.490 (3)
C5—O1 1.414 (3) C10—S4 1.824 (3)
C5—H5A 0.9700 C10—H10A 0.9700
C5—H5B 0.9700 C10—H10B 0.9700
C6—O1 1.409 (3) C11—S5 1.741 (2)
C6—C7 1.510 (4)
S1—C1—S2 124.03 (17) C6—C7—H7A 110.0
S1—C1—S5 123.24 (18) O2—C7—H7B 110.0
S2—C1—S5 112.70 (14) C6—C7—H7B 110.0
C11—C2—C3 127.4 (2) H7A—C7—H7B 108.4
C11—C2—S2 115.48 (18) O2—C8—C9 113.8 (2)
C3—C2—S2 117.08 (18) O2—C8—H8A 108.8
C2—C3—S3 114.98 (18) C9—C8—H8A 108.8
C2—C3—H3A 108.5 O2—C8—H8B 108.8
S3—C3—H3A 108.5 C9—C8—H8B 108.8
C2—C3—H3B 108.5 H8A—C8—H8B 107.7
S3—C3—H3B 108.5 C8—C9—S4 113.3 (2)
H3A—C3—H3B 107.5 C8—C9—H9A 108.9
C5—C4—S3 115.9 (2) S4—C9—H9A 108.9
C5—C4—H4A 108.3 C8—C9—H9B 108.9
S3—C4—H4A 108.3 S4—C9—H9B 108.9
C5—C4—H4B 108.3 H9A—C9—H9B 107.7
S3—C4—H4B 108.3 C11—C10—S4 110.08 (18)
H4A—C4—H4B 107.4 C11—C10—H10A 109.6
O1—C5—C4 108.3 (2) S4—C10—H10A 109.6
O1—C5—H5A 110.0 C11—C10—H10B 109.6
C4—C5—H5A 110.0 S4—C10—H10B 109.6
O1—C5—H5B 110.0 H10A—C10—H10B 108.2
C4—C5—H5B 110.0 C2—C11—C10 125.7 (2)
H5A—C5—H5B 108.4 C2—C11—S5 116.22 (18)
O1—C6—C7 107.8 (2) C10—C11—S5 118.0 (2)
O1—C6—H6A 110.1 C6—O1—C5 113.3 (2)
C7—C6—H6A 110.1 C7—O2—C8 113.1 (2)
O1—C6—H6B 110.1 C1—S2—C2 98.09 (12)
C7—C6—H6B 110.1 C4—S3—C3 103.16 (13)
H6A—C6—H6B 108.5 C9—S4—C10 99.88 (14)
O2—C7—C6 108.3 (2) C1—S5—C11 97.47 (13)
O2—C7—H7A 110.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7A···S1i 0.97 2.86 3.695 (3) 145
C10—H10A···O2ii 0.97 2.51 3.317 (3) 140

Symmetry codes: (i) x−1, y, z−1; (ii) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2592).

References

  1. Chen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem.25, 570–575.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Hansen, T. K., Jϕrgensen, T., Stein, P. C. & Becher, J. (1992). J. Org. Chem.57, 6403–6409.
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Hou, R., Li, B., Yin, B. & Wu, L. (2009). Acta Cryst. E65, o1057. [DOI] [PMC free article] [PubMed]
  6. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Trippé, G., Levillain, E., Le Derf, F., Gorgues, A., Sallé, M., Jeppesen, J. O., Nielsen, K. & Becher, J. (2002). Org. Lett.4, 2461–2464. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029468/cv2592sup1.cif

e-65-o2042-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029468/cv2592Isup2.hkl

e-65-o2042-Isup2.hkl (158KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES