Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 11;65(Pt 8):o1807–o1808. doi: 10.1107/S1600536809025847

(E)-1-Phenyl­ethanone semicarbazone

Hoong-Kun Fun a,*,, Chin Sing Yeap a,§, Mahesh Padaki b, Shridhar Malladi b, Arun M Isloor b
PMCID: PMC2977181  PMID: 21583511

Abstract

In the title compound, C9H11N3O, the benzene ring is disordered over two positions with refined occupancies of 0.922 (5) and 0.078 (5). The program PLATON [Spek (2009). Acta Cryst. D65, 148–155] recommends the solution in the space group C2/m with a = 7.3050 (3), b = 6.6745 (2), c = 18.3853 (6) Å and β = 96.986 (2)°. However, the large number of non-extinct reflections needed to be ignored if C2/m is chosen suggested that the space group is incorrect, even though the R values are lower than that for P21/c. The semicarbazone group is essentially planar, with a maximum deviation of 0.046 (1) Å for one of the N atoms. The mean plane of the semicarbazone group forms dihedral angles of 33.61 (8) and 39.1 (9)° with the benzene ring of the major and minor components, respectively. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds into extended chains along the c axis. The crystal structure is further stabilized by weak inter­molucular C—H⋯π inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For applications of semicarbazone derivatives, see: Chandra & Gupta (2005); Jain et al. (2002); Pilgram (1978); Warren et al. (1977); Yogeeswari et al. (2004). For the preparation of the title compound, see: Furniss et al. (1978). For related structures, see: Fun et al. (2009a ,b ,c ). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-o1807-scheme1.jpg

Experimental

Crystal data

  • C9H11N3O

  • M r = 177.21

  • Monoclinic, Inline graphic

  • a = 18.3853 (6) Å

  • b = 6.6745 (2) Å

  • c = 7.3050 (3) Å

  • β = 96.986 (2)°

  • V = 889.76 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.32 × 0.13 × 0.03 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.881, T max = 0.997

  • 9294 measured reflections

  • 2034 independent reflections

  • 1449 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.181

  • S = 1.08

  • 2034 reflections

  • 148 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025847/lh2857sup1.cif

e-65-o1807-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025847/lh2857Isup2.hkl

e-65-o1807-Isup2.hkl (100.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.88 (3) 2.02 (3) 2.901 (3) 177.2 (19)
N3—H2N3⋯O1ii 0.86 (3) 2.04 (3) 2.894 (3) 173 (3)
C2A—H2AACgiii 0.93 2.93 3.707 (2) 142
C5A—H5AACgiv 0.93 2.90 3.678 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg is the centroid of the C1A,C2A,C3,C4A,C5A,C6 benzene ring.

Acknowledgments

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks the Malaysian Government and Universiti Sains Malaysia for the award of the post of Research Officer under the Science Fund grant No. 305/PFIZIK/613312. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.

supplementary crystallographic information

Comment

In organic chemistry, a semicarbazone is a derivative of an aldehyde or ketone formed by a condensation between a ketone or aldehyde and semicarbazide. Semicarbazone find immense applications in the field of synthetic chemistry, such as medicinal chemistry (Warren et al., 1977), organometalics (Chandra & Gupta, 2005), polymers (Jain et al., 2002) and herbicides (Pilgram, 1978). 4-Sulphamoylphenyl semicarbazones were synthesized and were found to possess anticonvulsant activity (Yogeeswari et al., 2004). We hereby report the crystal structure of a semicarbazone of potential commercial importance, (I).

The bond lengths and angles of the title compound (I), (Fig. 1) are comparable to related structures (Fun et al., 2009a, b, c). A maximum deviation of -0.046 (1) Å for atom N2 from atoms O1, N1, N2, N3, C6, C7, C8 and C9 indicates that the semicarbazone group is essentially coplanar. This mean plane makes dihedral angle of 33.61 (8) and 39.1 (9)° with benzene ring of the major and minor component (C1A-C2A-C3-C4A-C5A-C6 and C1B-C2B-C3-C4B-C5B-C6), respectively. The molecules are linked together into infinite one-dimensional chains by the intermolecular N2—H1N2···O1i and N3—H2N3···O1ii (see Table 1 for symmetry codes) hydrogen bonds along the c axis (Fig. 2) and these hydrogen bonds generate R22(8) ring motifs (Bernstein et al., 1995). The crystal structure is stabilized by the weak intermolucular C—H···π interactions (Table 1).

Experimental

Semicarbazide hydrochloride (1.0 g, 8.9 mmol) and freshly recrystallized sodium acetate (0.9 g, 10.9 mmol) were dissolved in water (10 ml) following a literature procedure (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. To this, (1.0 g, 8.32 mmol) acetophenone was added and shaken well. A little alcohol was added to dissolve the turbidity. It was shaken for 10 more minutes and allowed to stand. The semicarbazone crystallizes on standing for 6 h. The separated crystals were filtered, washed with cold water and recrystallized from alcohol. Yield: 1.37 g (93%). M.p. 473-478 K.

Refinement

All hydrogen atoms were located in a difference Fourier map and refined freely. The benzene ring is disordered over 2 position with refined occupancies of 0.922 (5) and 0.078 (5). The program PLATON recommends the solution in C2/m space group with a = 7.3050 (3), b = 6.6745 (2), c = 18.3853 (6) Å and β = 96.986 (2)°. However the large number of non-extinct (i.e. observed) reflections needed to be ignored for the C2/m case suggested that the space group is incorrect even though the R-values are lower than that for P21/c.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. All disorder components are shown. The minor disorder component is shown with open bonds.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), viewed along the b axis. Intermolecular hydrogen bonds are shown in as dashed lines. Only the major disorder component is shown.

Crystal data

C9H11N3O F(000) = 376
Mr = 177.21 Dx = 1.323 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2113 reflections
a = 18.3853 (6) Å θ = 3.4–29.6°
b = 6.6745 (2) Å µ = 0.09 mm1
c = 7.3050 (3) Å T = 100 K
β = 96.986 (2)° Plate, colourless
V = 889.76 (5) Å3 0.32 × 0.13 × 0.03 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2034 independent reflections
Radiation source: fine-focus sealed tube 1449 reflections with I > 2σ(I)
graphite Rint = 0.043
φ and ω scans θmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −23→23
Tmin = 0.881, Tmax = 0.997 k = −8→8
9294 measured reflections l = −5→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0993P)2 + 0.2822P] where P = (Fo2 + 2Fc2)/3
2034 reflections (Δ/σ)max < 0.001
148 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.51345 (7) 0.4963 (2) 0.7657 (2) 0.0165 (4)
N1 0.32789 (9) 0.4925 (2) 0.8239 (3) 0.0130 (4)
N2 0.40259 (9) 0.4938 (2) 0.8715 (3) 0.0142 (4)
N3 0.41052 (10) 0.4917 (3) 0.5585 (3) 0.0174 (5)
C3 0.05611 (11) 0.5011 (3) 0.7581 (3) 0.0169 (5)
H3A 0.0064 0.5007 0.7151 0.020*
C6 0.20605 (10) 0.5016 (3) 0.8879 (3) 0.0114 (4)
C7 0.28592 (11) 0.5045 (3) 0.9528 (3) 0.0119 (5)
C8 0.44581 (11) 0.4942 (3) 0.7296 (3) 0.0135 (5)
C9 0.31370 (11) 0.5196 (3) 1.1541 (3) 0.0149 (5)
H9A 0.3444 0.6357 1.1750 0.022*
H9B 0.3415 0.4018 1.1920 0.022*
H9C 0.2730 0.5311 1.2242 0.022*
C1A 0.17941 (11) 0.3969 (3) 0.7290 (3) 0.0144 (5) 0.922 (5)
H1AA 0.2120 0.3267 0.6649 0.017* 0.922 (5)
C2A 0.10550 (12) 0.3954 (3) 0.6644 (3) 0.0176 (5) 0.922 (5)
H2AA 0.0888 0.3238 0.5584 0.021* 0.922 (5)
C4A 0.08190 (11) 0.6070 (3) 0.9162 (3) 0.0164 (5) 0.922 (5)
H4AA 0.0492 0.6784 0.9789 0.020* 0.922 (5)
C5A 0.15600 (11) 0.6073 (3) 0.9816 (3) 0.0142 (5) 0.922 (5)
H5AA 0.1726 0.6781 1.0883 0.017* 0.922 (5)
C1B 0.1548 (15) 0.395 (4) 0.979 (4) 0.022 (7)* 0.078 (5)
H1BA 0.1725 0.3268 1.0861 0.026* 0.078 (5)
C2B 0.0822 (18) 0.385 (5) 0.923 (5) 0.032 (8)* 0.078 (5)
H2BA 0.0506 0.3096 0.9861 0.039* 0.078 (5)
C4B 0.1048 (17) 0.607 (5) 0.664 (5) 0.032 (8)* 0.078 (5)
H4BA 0.0876 0.6756 0.5570 0.038* 0.078 (5)
C5B 0.1785 (16) 0.612 (5) 0.728 (4) 0.025 (7)* 0.078 (5)
H5BA 0.2103 0.6871 0.6662 0.030* 0.078 (5)
H1N2 0.4271 (15) 0.500 (3) 0.983 (4) 0.025 (7)*
H1N3 0.3627 (14) 0.495 (3) 0.543 (4) 0.019 (6)*
H2N3 0.4366 (14) 0.496 (3) 0.469 (4) 0.020 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0110 (7) 0.0241 (8) 0.0143 (8) −0.0017 (6) 0.0015 (6) −0.0005 (6)
N1 0.0088 (8) 0.0142 (8) 0.0159 (9) 0.0007 (6) 0.0010 (6) −0.0003 (7)
N2 0.0094 (8) 0.0207 (9) 0.0121 (9) −0.0008 (7) −0.0002 (7) 0.0002 (8)
N3 0.0102 (9) 0.0303 (11) 0.0118 (9) −0.0010 (8) 0.0020 (7) 0.0001 (8)
C3 0.0101 (9) 0.0172 (10) 0.0227 (12) 0.0015 (8) −0.0007 (8) 0.0033 (9)
C6 0.0110 (9) 0.0101 (9) 0.0131 (10) 0.0001 (7) 0.0008 (7) 0.0028 (8)
C7 0.0131 (9) 0.0088 (9) 0.0135 (10) 0.0005 (7) 0.0006 (8) 0.0005 (8)
C8 0.0121 (9) 0.0133 (9) 0.0152 (10) 0.0000 (7) 0.0024 (7) −0.0005 (8)
C9 0.0118 (9) 0.0243 (11) 0.0086 (10) −0.0009 (8) 0.0016 (7) −0.0015 (8)
C1A 0.0135 (10) 0.0140 (11) 0.0155 (12) 0.0018 (8) 0.0015 (9) −0.0016 (9)
C2A 0.0158 (11) 0.0169 (11) 0.0189 (12) −0.0007 (9) −0.0028 (9) −0.0009 (9)
C4A 0.0127 (11) 0.0186 (12) 0.0185 (12) 0.0018 (9) 0.0045 (9) −0.0008 (9)
C5A 0.0160 (11) 0.0143 (11) 0.0120 (11) 0.0012 (9) 0.0011 (8) −0.0008 (9)

Geometric parameters (Å, °)

O1—C8 1.240 (2) C6—C7 1.487 (3)
N1—C7 1.290 (3) C7—C9 1.500 (3)
N1—N2 1.375 (2) C9—H9A 0.9600
N2—C8 1.380 (3) C9—H9B 0.9600
N2—H1N2 0.88 (3) C9—H9C 0.9600
N3—C8 1.336 (3) C1A—C2A 1.383 (3)
N3—H1N3 0.87 (3) C1A—H1AA 0.9300
N3—H2N3 0.85 (3) C2A—H2AA 0.9300
C3—C4B 1.39 (3) C4A—C5A 1.388 (3)
C3—C4A 1.387 (3) C4A—H4AA 0.9300
C3—C2A 1.394 (3) C5A—H5AA 0.9300
C3—C2B 1.46 (3) C1B—C2B 1.35 (4)
C3—H3A 0.9300 C1B—H1BA 0.9300
C6—C1A 1.392 (3) C2B—H2BA 0.9300
C6—C5A 1.402 (3) C4B—C5B 1.38 (4)
C6—C1B 1.41 (3) C4B—H4BA 0.9300
C6—C5B 1.42 (3) C5B—H5BA 0.9300
C7—N1—N2 118.86 (18) N3—C8—N2 116.34 (18)
N1—N2—C8 117.31 (18) C7—C9—H9A 109.5
N1—N2—H1N2 128.1 (18) C7—C9—H9B 109.5
C8—N2—H1N2 114.6 (18) H9A—C9—H9B 109.5
C8—N3—H1N3 119.0 (17) C7—C9—H9C 109.5
C8—N3—H2N3 117.3 (18) H9A—C9—H9C 109.5
H1N3—N3—H2N3 124 (2) H9B—C9—H9C 109.5
C4B—C3—C4A 88.6 (14) C2A—C1A—C6 121.3 (2)
C4B—C3—C2A 61.1 (13) C2A—C1A—H1AA 119.4
C4A—C3—C2A 119.32 (19) C6—C1A—H1AA 119.4
C4B—C3—C2B 120.7 (19) C1A—C2A—C3 120.0 (2)
C4A—C3—C2B 62.5 (13) C1A—C2A—H2AA 120.0
C2A—C3—C2B 88.3 (13) C3—C2A—H2AA 120.0
C4B—C3—H3A 120.2 C3—C4A—C5A 120.6 (2)
C4A—C3—H3A 120.3 C3—C4A—H4AA 119.7
C2A—C3—H3A 120.3 C5A—C4A—H4AA 119.7
C2B—C3—H3A 119.1 C4A—C5A—C6 120.4 (2)
C1A—C6—C5A 118.32 (18) C4A—C5A—H5AA 119.8
C1A—C6—C1B 87.4 (12) C6—C5A—H5AA 119.8
C5A—C6—C1B 60.4 (11) C2B—C1B—C6 125 (3)
C1A—C6—C5B 61.3 (12) C2B—C1B—H1BA 117.4
C5A—C6—C5B 87.2 (12) C6—C1B—H1BA 117.4
C1B—C6—C5B 117.2 (17) C1B—C2B—C3 116 (3)
C1A—C6—C7 120.39 (17) C1B—C2B—H2BA 122.1
C5A—C6—C7 121.27 (19) C3—C2B—H2BA 122.1
C1B—C6—C7 123.1 (12) C5B—C4B—C3 121 (3)
C5B—C6—C7 119.7 (12) C5B—C4B—H4BA 119.6
N1—C7—C6 114.93 (18) C3—C4B—H4BA 119.6
N1—C7—C9 123.85 (18) C4B—C5B—C6 120 (3)
C6—C7—C9 121.22 (17) C4B—C5B—H5BA 119.9
O1—C8—N3 124.04 (19) C6—C5B—H5BA 119.9
O1—C8—N2 119.63 (19)
C7—N1—N2—C8 −175.79 (18) C2B—C3—C4A—C5A 70.3 (14)
N2—N1—C7—C6 −179.91 (16) C3—C4A—C5A—C6 0.5 (3)
N2—N1—C7—C9 −0.2 (3) C1A—C6—C5A—C4A −0.1 (3)
C1A—C6—C7—N1 30.7 (3) C1B—C6—C5A—C4A −68.7 (14)
C5A—C6—C7—N1 −147.66 (19) C5B—C6—C5A—C4A 54.9 (12)
C1B—C6—C7—N1 139.4 (14) C7—C6—C5A—C4A 178.31 (19)
C5B—C6—C7—N1 −41.4 (14) C1A—C6—C1B—C2B −54 (3)
C1A—C6—C7—C9 −149.0 (2) C5A—C6—C1B—C2B 71 (3)
C5A—C6—C7—C9 32.6 (3) C5B—C6—C1B—C2B 2(4)
C1B—C6—C7—C9 −40.4 (14) C7—C6—C1B—C2B −179 (2)
C5B—C6—C7—C9 138.9 (14) C6—C1B—C2B—C3 −2(4)
N1—N2—C8—O1 179.65 (17) C4B—C3—C2B—C1B 2(4)
N1—N2—C8—N3 −0.5 (3) C4A—C3—C2B—C1B −68 (2)
C5A—C6—C1A—C2A −0.3 (3) C2A—C3—C2B—C1B 57 (3)
C1B—C6—C1A—C2A 53.8 (12) C4A—C3—C4B—C5B 54 (3)
C5B—C6—C1A—C2A −69.3 (13) C2A—C3—C4B—C5B −71 (3)
C7—C6—C1A—C2A −178.78 (19) C2B—C3—C4B—C5B −2(4)
C6—C1A—C2A—C3 0.4 (3) C3—C4B—C5B—C6 2(4)
C4B—C3—C2A—C1A 69.9 (17) C1A—C6—C5B—C4B 68 (3)
C4A—C3—C2A—C1A −0.1 (3) C5A—C6—C5B—C4B −57 (3)
C2B—C3—C2A—C1A −57.0 (13) C1B—C6—C5B—C4B −2(3)
C4B—C3—C4A—C5A −55.7 (14) C7—C6—C5B—C4B 179 (2)
C2A—C3—C4A—C5A −0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1i 0.88 (3) 2.02 (3) 2.901 (3) 177.2 (19)
N3—H2N3···O1ii 0.86 (3) 2.04 (3) 2.894 (3) 173 (3)
C2A—H2AA···Cgiii 0.93 2.93 3.707 (2) 142
C5A—H5AA···Cgiv 0.93 2.90 3.678 (2) 142

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) x, −y−1/2, z−3/2; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2857).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chandra, S. & Gupta, L. K. (2005). Spectrochim. Acta A, 62, 1089–1094. [DOI] [PubMed]
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Fun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1591–o1592. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Quah, C. K., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1634–o1635. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009c). Acta Cryst. E65, o1619–o1620. [DOI] [PMC free article] [PubMed]
  8. Furniss, B. S., Hannaford, A. J., Roger, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel’s Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.
  9. Jain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym.51, 101–110.
  10. Pilgram, K. H. G. (1978). US Patent No. 4 108 399.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Warren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem.20, 1520–1521. [DOI] [PubMed]
  14. Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025847/lh2857sup1.cif

e-65-o1807-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025847/lh2857Isup2.hkl

e-65-o1807-Isup2.hkl (100.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES