Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 11;65(Pt 8):o1832. doi: 10.1107/S1600536809026002

3α-Hydr­oxy-ent-atis-16-en-14-one

Huan Wang a, Kai-Bei Yu b, Li-Sheng Ding c, Xiao-Duo Luo d, Xiao-Feng Zhang a,*
PMCID: PMC2977182  PMID: 21583534

Abstract

The title compound, C20H30O2, is an ent-atisane diterpenoid which was isolated from the roots of Euphorbia kansuensis. The mol­ecule contains five six-membered rings, among which three six-membered rings of the bicyclo­[2.2.2]octane unit adopt boat conformations and two cyclo­hexane rings adopt chair conformations. In the crystal structure, mol­ecules are connected by inter­molecular O—H⋯O hydrogen bonds, forming zigzag chains propagating parallel to [001].

Related literature

For applications of the roots of Euphorbia kansuensis, see: Zhao & Zhao (1992). For related structures, see: Lal et al. (1990); He et al. (2008).graphic file with name e-65-o1832-scheme1.jpg

Experimental

Crystal data

  • C20H30O2

  • M r = 302.44

  • Orthorhombic, Inline graphic

  • a = 7.310 (1) Å

  • b = 12.346 (2) Å

  • c = 18.431 (3) Å

  • V = 1663.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 285 K

  • 0.54 × 0.38 × 0.30 mm

Data collection

  • Siemens P4 diffractometer

  • Absorption correction: none

  • 2435 measured reflections

  • 1744 independent reflections

  • 1240 reflections with I > 2σ(I)

  • R int = 0.020

  • 3 standard reflections every 97 reflections intensity decay: 2.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.076

  • S = 0.96

  • 1744 reflections

  • 207 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026002/xu2540sup1.cif

e-65-o1832-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026002/xu2540Isup2.hkl

e-65-o1832-Isup2.hkl (85.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.813 (10) 2.110 (11) 2.922 (3) 178 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the State Key Laboratory of Phytochemistry and Plant Resources in West China for financial support. The project was also supported by the West Doctoral Program of the Chinese Academy of Sciences.

supplementary crystallographic information

Comment

Euphorbiakansuensis Proch. (Euphorbiaceae) is distributed mainly in the west of China. As a Tibetan medicine, the roots of this plant have been used as pyretolysis, cholagogue, apocenosis and purgative (Zhao & Zhao, 1992). Our investigation of the roots of this plant led to the isolation of the title compound. The compound has been reported previously and its structure was postulated from spectroscopic methods (He et al., 2008). In order to further confirm the spatial structure, a crystal structure analysis has been undertaken.

The molecular structure (Fig. 1) contains five six-membered rings (A, atoms C1–C5/C10; B, C5–C10; C, C8/C9/C11–C14; D, C8/C12–C16 and E, C8/C9/C11/C12/C15/C16). Rings A and B adopt a chair conformation, while rings C, D and E of the bicyclo-[2.2.2]-octane adopt boat conformations. The A/B and B/E ring junctions are trans-fused, but B/C is cis-fused. In the crystal structure, the molecules are linked by intermolecular O—H···O hydrogen bonds, forming the one-dimensional structure (Fig. 2).

Experimental

The air-dried roots of E. kansuensis (15 kg) were extracted with 85% EtOH (2 × 30 l) at 358 K for 2 h and then evaporated in vacuo. The residue suspended in water was extracted with CHCl3. The CHCl3 extract (180 g) was subjected to Si-gel CC using solvents of increasing polarity from petroleum ether through EtOAc to afford 15 fractions (F1-F15). Fraction F7 was further separated by RP-18 CC using MeOH-H2O (68:32) to give the title compound (18 mg), and further crystallized at room temperature from MeOH to afford prisms. The analytical NMR data of (I) are in accordance with the reference (He et al., 2008)

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.98 Å and O—H = 0.81 Å). H atoms bonded to C atoms were refined as riding, with Uiso(H) = 1.2Ueq(C). The absolute configuration could not be determined from the X-ray analysis because of the absence of strong anomalous scatterers. Friedel pairs were therefore merged before refinement. However, the absolute configuration may be suggested on a biogenetic basis (Lal et al., 1990; He et al., 2008).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C20H30O2 F(000) = 664
Mr = 302.44 Dx = 1.208 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 28 reflections
a = 7.310 (1) Å θ = 2.8–13.3°
b = 12.346 (2) Å µ = 0.08 mm1
c = 18.431 (3) Å T = 285 K
V = 1663.4 (4) Å3 Prism, colourless
Z = 4 0.54 × 0.38 × 0.30 mm

Data collection

Siemens P4 diffractometer Rint = 0.020
Radiation source: normal-focus sealed tube θmax = 25.3°, θmin = 2.0°
graphite h = 0→8
ω scans k = 0→14
2435 measured reflections l = −1→22
1744 independent reflections 3 standard reflections every 97 reflections
1240 reflections with I > 2σ(I) intensity decay: 2.8%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.031P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max < 0.001
1744 reflections Δρmax = 0.12 e Å3
207 parameters Δρmin = −0.13 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0228 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6384 (3) 0.66962 (17) 0.56057 (11) 0.0535 (6)
O2 0.6926 (3) 0.34246 (17) 0.20401 (9) 0.0586 (7)
C1 0.8688 (4) 0.4212 (2) 0.48422 (14) 0.0411 (7)
H1A 0.8136 0.3692 0.5170 0.049*
H1B 0.9969 0.4023 0.4789 0.049*
C2 0.8547 (4) 0.5341 (2) 0.51763 (16) 0.0448 (8)
H2A 0.9139 0.5344 0.5648 0.054*
H2B 0.9173 0.5859 0.4869 0.054*
C3 0.6573 (4) 0.5667 (2) 0.52594 (14) 0.0378 (7)
H3 0.5982 0.5127 0.5571 0.045*
C4 0.5518 (4) 0.5697 (2) 0.45424 (14) 0.0356 (7)
C5 0.5770 (4) 0.45689 (19) 0.41716 (13) 0.0303 (6)
H5 0.5164 0.4058 0.4500 0.036*
C6 0.4748 (4) 0.4443 (2) 0.34489 (14) 0.0382 (7)
H6A 0.3540 0.4762 0.3490 0.046*
H6B 0.5406 0.4823 0.3070 0.046*
C7 0.4570 (4) 0.3248 (2) 0.32477 (15) 0.0393 (7)
H7A 0.3784 0.2894 0.3599 0.047*
H7B 0.3987 0.3192 0.2777 0.047*
C8 0.6396 (4) 0.26588 (19) 0.32227 (13) 0.0319 (7)
C9 0.7584 (4) 0.29023 (19) 0.38987 (14) 0.0319 (7)
H9 0.6941 0.2567 0.4308 0.038*
C10 0.7746 (3) 0.4128 (2) 0.40951 (13) 0.0304 (7)
C11 0.9430 (4) 0.2297 (2) 0.38417 (15) 0.0471 (8)
H11A 1.0415 0.2820 0.3799 0.057*
H11B 0.9630 0.1879 0.4280 0.057*
C12 0.9455 (4) 0.1535 (2) 0.31781 (15) 0.0490 (8)
H12 1.0595 0.1119 0.3158 0.059*
C13 0.9223 (5) 0.2234 (2) 0.24987 (17) 0.0558 (9)
H13A 1.0244 0.2733 0.2459 0.067*
H13B 0.9220 0.1776 0.2071 0.067*
C14 0.7470 (5) 0.2859 (2) 0.25353 (15) 0.0409 (7)
C15 0.6065 (4) 0.1418 (2) 0.32132 (16) 0.0448 (8)
H15A 0.5334 0.1217 0.3631 0.054*
H15B 0.5382 0.1227 0.2780 0.054*
C16 0.7825 (4) 0.0797 (2) 0.32255 (15) 0.0444 (8)
C17 0.7944 (5) −0.0274 (2) 0.32922 (14) 0.0656 (10)
H17A 0.6887 −0.0688 0.3335 0.079*
H17B 0.9084 −0.0608 0.3296 0.079*
C18 0.6115 (5) 0.6678 (2) 0.40765 (14) 0.0515 (9)
H18A 0.5673 0.7334 0.4294 0.062*
H18B 0.5617 0.6608 0.3597 0.062*
H18C 0.7426 0.6701 0.4049 0.062*
C19 0.3481 (4) 0.5846 (2) 0.47237 (17) 0.0556 (9)
H19A 0.3332 0.6468 0.5030 0.067*
H19B 0.3037 0.5214 0.4971 0.067*
H19C 0.2801 0.5948 0.4283 0.067*
C20 0.8897 (4) 0.4746 (2) 0.35366 (15) 0.0452 (8)
H20A 1.0031 0.4371 0.3460 0.054*
H20B 0.9141 0.5463 0.3713 0.054*
H20C 0.8239 0.4790 0.3087 0.054*
H1O 0.683 (4) 0.667 (3) 0.6009 (9) 0.083 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0756 (17) 0.0435 (13) 0.0414 (12) 0.0026 (13) −0.0094 (14) −0.0140 (11)
O2 0.0858 (18) 0.0589 (13) 0.0310 (10) 0.0106 (14) 0.0045 (12) 0.0076 (10)
C1 0.0394 (17) 0.0402 (15) 0.0437 (16) 0.0031 (15) −0.0115 (16) 0.0003 (14)
C2 0.054 (2) 0.0401 (16) 0.0406 (17) −0.0047 (17) −0.0182 (17) −0.0040 (15)
C3 0.0534 (18) 0.0316 (15) 0.0284 (14) −0.0059 (15) 0.0001 (15) −0.0041 (13)
C4 0.0402 (17) 0.0325 (15) 0.0341 (15) 0.0031 (14) −0.0042 (14) −0.0044 (13)
C5 0.0330 (16) 0.0308 (14) 0.0271 (14) 0.0007 (13) −0.0034 (13) 0.0004 (12)
C6 0.0349 (17) 0.0426 (17) 0.0371 (16) 0.0054 (14) −0.0103 (14) −0.0042 (13)
C7 0.0388 (17) 0.0425 (16) 0.0365 (15) −0.0001 (15) −0.0076 (16) −0.0063 (14)
C8 0.0358 (17) 0.0312 (14) 0.0288 (14) −0.0008 (14) 0.0002 (15) −0.0014 (13)
C9 0.0344 (16) 0.0317 (14) 0.0296 (13) 0.0009 (14) 0.0030 (14) 0.0035 (12)
C10 0.0309 (16) 0.0306 (15) 0.0296 (14) −0.0024 (13) −0.0024 (14) 0.0013 (12)
C11 0.048 (2) 0.0395 (16) 0.0537 (19) 0.0073 (16) −0.0091 (18) −0.0038 (15)
C12 0.0517 (19) 0.0470 (18) 0.0482 (18) 0.0178 (17) 0.0026 (18) −0.0026 (17)
C13 0.061 (2) 0.0540 (18) 0.0522 (19) 0.0075 (19) 0.018 (2) 0.0013 (17)
C14 0.056 (2) 0.0359 (15) 0.0313 (15) −0.0021 (17) 0.0015 (17) −0.0038 (14)
C15 0.059 (2) 0.0381 (17) 0.0373 (16) −0.0056 (16) −0.0015 (18) −0.0065 (15)
C16 0.065 (2) 0.0371 (16) 0.0307 (14) 0.0047 (17) −0.0060 (17) −0.0055 (14)
C17 0.097 (3) 0.0467 (19) 0.0533 (19) 0.011 (2) −0.014 (2) −0.0070 (17)
C18 0.081 (2) 0.0318 (16) 0.0415 (17) 0.0057 (19) −0.0087 (19) 0.0020 (14)
C19 0.050 (2) 0.057 (2) 0.060 (2) 0.0091 (18) −0.0085 (19) −0.0210 (18)
C20 0.0452 (19) 0.0425 (16) 0.0479 (18) −0.0069 (17) 0.0072 (16) −0.0002 (14)

Geometric parameters (Å, °)

O1—C3 1.429 (3) C9—C10 1.560 (3)
O1—H1O 0.813 (10) C9—H9 0.9800
O2—C14 1.216 (3) C10—C20 1.533 (3)
C1—C2 1.527 (3) C11—C12 1.544 (4)
C1—C10 1.543 (3) C11—H11A 0.9700
C1—H1A 0.9700 C11—H11B 0.9700
C1—H1B 0.9700 C12—C16 1.502 (4)
C2—C3 1.507 (4) C12—C13 1.531 (4)
C2—H2A 0.9700 C12—H12 0.9800
C2—H2B 0.9700 C13—C14 1.497 (4)
C3—C4 1.531 (3) C13—H13A 0.9700
C3—H3 0.9800 C13—H13B 0.9700
C4—C19 1.537 (4) C15—C16 1.498 (4)
C4—C18 1.548 (3) C15—H15A 0.9700
C4—C5 1.562 (3) C15—H15B 0.9700
C5—C6 1.535 (3) C16—C17 1.331 (3)
C5—C10 1.550 (3) C17—H17A 0.9300
C5—H5 0.9800 C17—H17B 0.9300
C6—C7 1.526 (3) C18—H18A 0.9600
C6—H6A 0.9700 C18—H18B 0.9600
C6—H6B 0.9700 C18—H18C 0.9600
C7—C8 1.521 (4) C19—H19A 0.9600
C7—H7A 0.9700 C19—H19B 0.9600
C7—H7B 0.9700 C19—H19C 0.9600
C8—C14 1.511 (4) C20—H20A 0.9600
C8—C9 1.549 (4) C20—H20B 0.9600
C8—C15 1.550 (3) C20—H20C 0.9600
C9—C11 1.545 (4)
C3—O1—H1O 109 (2) C20—C10—C5 113.4 (2)
C2—C1—C10 113.0 (2) C1—C10—C5 108.1 (2)
C2—C1—H1A 109.0 C20—C10—C9 111.6 (2)
C10—C1—H1A 109.0 C1—C10—C9 107.8 (2)
C2—C1—H1B 109.0 C5—C10—C9 107.0 (2)
C10—C1—H1B 109.0 C12—C11—C9 111.0 (2)
H1A—C1—H1B 107.8 C12—C11—H11A 109.4
C3—C2—C1 110.5 (2) C9—C11—H11A 109.4
C3—C2—H2A 109.6 C12—C11—H11B 109.4
C1—C2—H2A 109.6 C9—C11—H11B 109.4
C3—C2—H2B 109.6 H11A—C11—H11B 108.0
C1—C2—H2B 109.6 C16—C12—C13 107.6 (3)
H2A—C2—H2B 108.1 C16—C12—C11 108.3 (2)
O1—C3—C2 112.1 (2) C13—C12—C11 107.6 (2)
O1—C3—C4 108.4 (2) C16—C12—H12 111.1
C2—C3—C4 113.7 (2) C13—C12—H12 111.1
O1—C3—H3 107.5 C11—C12—H12 111.1
C2—C3—H3 107.5 C14—C13—C12 110.4 (3)
C4—C3—H3 107.5 C14—C13—H13A 109.6
C3—C4—C19 107.7 (2) C12—C13—H13A 109.6
C3—C4—C18 110.8 (2) C14—C13—H13B 109.6
C19—C4—C18 107.5 (3) C12—C13—H13B 109.6
C3—C4—C5 107.3 (2) H13A—C13—H13B 108.1
C19—C4—C5 108.4 (2) O2—C14—C13 122.8 (3)
C18—C4—C5 115.0 (2) O2—C14—C8 123.6 (3)
C6—C5—C10 109.8 (2) C13—C14—C8 113.5 (3)
C6—C5—C4 114.4 (2) C16—C15—C8 111.8 (2)
C10—C5—C4 117.6 (2) C16—C15—H15A 109.3
C6—C5—H5 104.5 C8—C15—H15A 109.3
C10—C5—H5 104.5 C16—C15—H15B 109.3
C4—C5—H5 104.5 C8—C15—H15B 109.3
C7—C6—C5 110.5 (2) H15A—C15—H15B 107.9
C7—C6—H6A 109.5 C17—C16—C15 124.5 (3)
C5—C6—H6A 109.5 C17—C16—C12 123.8 (3)
C7—C6—H6B 109.5 C15—C16—C12 111.7 (2)
C5—C6—H6B 109.5 C16—C17—H17A 120.0
H6A—C6—H6B 108.1 C16—C17—H17B 120.0
C8—C7—C6 113.3 (2) H17A—C17—H17B 120.0
C8—C7—H7A 108.9 C4—C18—H18A 109.5
C6—C7—H7A 108.9 C4—C18—H18B 109.5
C8—C7—H7B 108.9 H18A—C18—H18B 109.5
C6—C7—H7B 108.9 C4—C18—H18C 109.5
H7A—C7—H7B 107.7 H18A—C18—H18C 109.5
C14—C8—C7 113.8 (2) H18B—C18—H18C 109.5
C14—C8—C9 110.6 (2) C4—C19—H19A 109.5
C7—C8—C9 112.0 (2) C4—C19—H19B 109.5
C14—C8—C15 103.5 (2) H19A—C19—H19B 109.5
C7—C8—C15 109.6 (2) C4—C19—H19C 109.5
C9—C8—C15 106.8 (2) H19A—C19—H19C 109.5
C11—C9—C8 110.0 (2) H19B—C19—H19C 109.5
C11—C9—C10 114.7 (2) C10—C20—H20A 109.5
C8—C9—C10 114.7 (2) C10—C20—H20B 109.5
C11—C9—H9 105.5 H20A—C20—H20B 109.5
C8—C9—H9 105.5 C10—C20—H20C 109.5
C10—C9—H9 105.5 H20A—C20—H20C 109.5
C20—C10—C1 108.7 (2) H20B—C20—H20C 109.5
C10—C1—C2—C3 58.1 (3) C4—C5—C10—C1 50.0 (3)
C1—C2—C3—O1 176.9 (2) C6—C5—C10—C9 −61.1 (3)
C1—C2—C3—C4 −59.7 (3) C4—C5—C10—C9 165.85 (19)
O1—C3—C4—C19 −64.3 (3) C11—C9—C10—C20 58.7 (3)
C2—C3—C4—C19 170.4 (2) C8—C9—C10—C20 −70.0 (3)
O1—C3—C4—C18 53.0 (3) C11—C9—C10—C1 −60.6 (3)
C2—C3—C4—C18 −72.3 (3) C8—C9—C10—C1 170.7 (2)
O1—C3—C4—C5 179.3 (2) C11—C9—C10—C5 −176.7 (2)
C2—C3—C4—C5 53.9 (3) C8—C9—C10—C5 54.6 (3)
C3—C4—C5—C6 178.3 (2) C8—C9—C11—C12 −6.4 (3)
C19—C4—C5—C6 62.3 (3) C10—C9—C11—C12 −137.4 (2)
C18—C4—C5—C6 −57.9 (3) C9—C11—C12—C16 −54.4 (3)
C3—C4—C5—C10 −50.6 (3) C9—C11—C12—C13 61.7 (3)
C19—C4—C5—C10 −166.6 (2) C16—C12—C13—C14 57.9 (3)
C18—C4—C5—C10 73.1 (3) C11—C12—C13—C14 −58.6 (3)
C10—C5—C6—C7 62.9 (3) C12—C13—C14—O2 −175.6 (3)
C4—C5—C6—C7 −162.4 (2) C12—C13—C14—C8 0.7 (3)
C5—C6—C7—C8 −55.2 (3) C7—C8—C14—O2 −1.0 (4)
C6—C7—C8—C14 −79.2 (3) C9—C8—C14—O2 −128.1 (3)
C6—C7—C8—C9 47.2 (3) C15—C8—C14—O2 117.9 (3)
C6—C7—C8—C15 165.5 (2) C7—C8—C14—C13 −177.2 (2)
C14—C8—C9—C11 −51.2 (3) C9—C8—C14—C13 55.7 (3)
C7—C8—C9—C11 −179.3 (2) C15—C8—C14—C13 −58.3 (3)
C15—C8—C9—C11 60.7 (3) C14—C8—C15—C16 61.1 (3)
C14—C8—C9—C10 79.9 (3) C7—C8—C15—C16 −177.2 (2)
C7—C8—C9—C10 −48.2 (3) C9—C8—C15—C16 −55.6 (3)
C15—C8—C9—C10 −168.2 (2) C8—C15—C16—C17 173.1 (3)
C2—C1—C10—C20 71.8 (3) C8—C15—C16—C12 −5.0 (3)
C2—C1—C10—C5 −51.7 (3) C13—C12—C16—C17 126.9 (3)
C2—C1—C10—C9 −167.0 (2) C11—C12—C16—C17 −117.1 (3)
C6—C5—C10—C20 62.4 (3) C13—C12—C16—C15 −55.0 (3)
C4—C5—C10—C20 −70.7 (3) C11—C12—C16—C15 61.1 (3)
C6—C5—C10—C1 −177.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O···O2i 0.81 (1) 2.11 (1) 2.922 (3) 178 (3)

Symmetry codes: (i) −x+3/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2540).

References

  1. He, F., Pu, J. X., Huang, S. X., Xiao, W. L., Yang, L. B., Li, X. N., Zhao, Y., Ding, J., Xu, C. H. & Sun, H. D. (2008). Helv. Chim. Acta, 91, 2139–2147.
  2. Lal, A. R., Cambie, R. C., Rutledge, P. S. & Woodgate, P. D. (1990). Phytochemistry, 29, 1925–1935.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Siemens (1994). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  5. Zhao, Z.-L. & Zhao, R.-N. (1992). J. Chin. Pharm.27, 269–270.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026002/xu2540sup1.cif

e-65-o1832-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026002/xu2540Isup2.hkl

e-65-o1832-Isup2.hkl (85.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES