Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 29;65(Pt 8):m1001. doi: 10.1107/S1600536809029559

Aqua­bis(triphenyl­phosphine-κP)copper(I) tetra­fluoridoborate

Yanfeng Dai a,*, Yi Zhang a, Jianwen Tian a, Zhen Liu a
PMCID: PMC2977191  PMID: 21583302

Abstract

In the title compound, [Cu(C18H15P)2(H2O)]BF4, the CuI atom is coordinated by two P atoms from triphenyl­phosphine ligands and one water mol­ecule in a distorted trigonal geometry. In the BF4 anion, three F atoms are disordered over two sites around the B—F bond, the site-occupancy ratio being 0.67 (6):0.33 (6). The Cu⋯F distance of 2.602 (5) Å between the Cu atom and the ordered F atom may suggest a weak but genuine inter­action. O—H⋯F and weak C—H⋯F hydrogen bonding is present in the crystal structure.

Related literature

For the applications of CuI complexes, see: Kirchhoff et al. (1985); Zhang et al. (2004); Moudam et al. (2007). For the tetra­hedral coordination geometry of CuI complexes, see: Engelhardt et al. (1985); Barron et al. (1987). For the weak Cu⋯F inter­action, see: Mao et al. (2003); Fu et al. (2004). For Cu—P and Cu—O bond distances, see: Meng et al. (2006).graphic file with name e-65-m1001-scheme1.jpg

Experimental

Crystal data

  • [Cu(C18H15P)2(H2O)]BF4

  • M r = 692.91

  • Monoclinic, Inline graphic

  • a = 13.9737 (14) Å

  • b = 12.4258 (11) Å

  • c = 19.4276 (18) Å

  • β = 94.521 (1)°

  • V = 3362.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 298 K

  • 0.48 × 0.19 × 0.16 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.702, T max = 0.883

  • 17192 measured reflections

  • 5914 independent reflections

  • 3008 reflections with I > 2σ(I)

  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.202

  • S = 1.04

  • 5914 reflections

  • 434 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029559/xu2555sup1.cif

e-65-m1001-sup1.cif (28.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029559/xu2555Isup2.hkl

e-65-m1001-Isup2.hkl (289.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—O1 2.105 (5)
Cu1—P1 2.2318 (18)
Cu1—P2 2.2478 (18)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯F2 0.85 1.87 2.71 (3) 171
O1—H1D⋯F3i 0.85 1.98 2.82 (3) 171
C28—H28⋯F4ii 0.93 2.51 3.25 (3) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Copper(I) complexes with phosphine ligand have attracted much attention because of their rich photophysical properties and potential applications in organic light-emitting diodes (OLEDs) (Kirchhoff et al., 1985; Zhang et al., 2004; Moudam et al., 2007). These complexes usually adopt tetrahedron coordination geometry (Engelhardt et al., 1985; Barron et al., 1987), three-coordinated copper(I) complexes with phosphine ligands is relatively little known. We reported here the title three-coordinated copper(I) complex.

The molecular structure is depicted in Fig. 1. The copper(I) atom is three-coordinated in distorted trigonal geometry (Table 1) by two P atoms from two triphenylphosphine ligands and one water molecule. The Cu1—P and Cu1—O bond distances are comparable to those found in related complexes (Engelhardt et al., 1985; Barron et al., 1987; Meng et al., 2006). The coordination angles around the Cu1 atom are ranging from 104.80 (16)° to 133.89 (7)°. In the BF4 anion three F atoms are disordered over two sites around the B1—F1 bond. The Cu1···F1 distance of 2.602 (5) Å between the Cu1 atom and the ordered F1 atom may suggests a weak but genuine interaction, similar to the situation found in the related structures (Fu et al., 2004); Mao et al., 2003).

The O—H···F and weak C—H···F hydrogen bonding is present in the crystal structure (Table 2).

Experimental

[Cu(CH3CN)4]BF4 (0.031 g, 0.1 mmol) was added to a solution of triphenylphosphine (0.052 g, 0.2 mmol) in 30 ml dichloromethane with small amount of water under nitrogen atmosphere. The mixture was stirred at room temperature for 2 h to obtain the yellow solution. Crystallization by slow diffusion of diethyl ether into the dichloromethane solution yielded yellow crystals suitable for X-ray diffraction (yield: 47%). Analysis calculated for [Cu(H2O)(C18H15P)2].(BF4): C 62.40, H 4.66%; Found: C 62.08, H 4.93%.

Refinement

All H atoms were positioned geometrically and treated as riding (O—H = 0.65 Å and C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,O). The F2, F3 and F4 atoms are disordered over two sites, site occupancy factors were refined to 0.67 (6) and 0.33 (6).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The H atoms in benzene rings and the minor disorder component of the F2—F4 are omitted for clarity. The Cu···F weak interaction and O—H···F hydrogen bond are indicated by dashed lines.

Crystal data

[Cu(C18H15P)2(H2O)]BF4 F(000) = 1424
Mr = 692.91 Dx = 1.369 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2641 reflections
a = 13.9737 (14) Å θ = 2.2–21.6°
b = 12.4258 (11) Å µ = 0.79 mm1
c = 19.4276 (18) Å T = 298 K
β = 94.521 (1)° Block, yellow
V = 3362.8 (5) Å3 0.48 × 0.19 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer 5914 independent reflections
Radiation source: fine-focus sealed tube 3008 reflections with I > 2σ(I)
graphite Rint = 0.078
φ and ω scans θmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −16→15
Tmin = 0.702, Tmax = 0.883 k = −14→14
17192 measured reflections l = −23→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0646P)2 + 7.3064P] where P = (Fo2 + 2Fc2)/3
5914 reflections (Δ/σ)max = 0.001
434 parameters Δρmax = 0.93 e Å3
1 restraint Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.36105 (6) 0.80395 (7) 0.13634 (4) 0.0517 (3)
O1 0.2503 (4) 0.7985 (4) 0.2037 (2) 0.0875 (17)
H1C 0.2344 0.8634 0.2107 0.105*
H1D 0.2314 0.7597 0.2361 0.105*
P1 0.50924 (12) 0.81613 (14) 0.18770 (8) 0.0460 (4)
P2 0.29834 (12) 0.72605 (14) 0.03854 (8) 0.0464 (4)
C1 0.6043 (4) 0.8457 (5) 0.1314 (3) 0.0463 (15)
C2 0.5854 (5) 0.9201 (6) 0.0780 (3) 0.0606 (19)
H2 0.5247 0.9510 0.0715 0.073*
C3 0.6543 (6) 0.9483 (6) 0.0352 (4) 0.069 (2)
H3 0.6399 0.9972 −0.0003 0.082*
C4 0.7436 (6) 0.9051 (6) 0.0442 (4) 0.067 (2)
H4 0.7902 0.9242 0.0149 0.081*
C5 0.7649 (5) 0.8330 (6) 0.0971 (4) 0.068 (2)
H5 0.8265 0.8044 0.1038 0.082*
C6 0.6956 (5) 0.8025 (6) 0.1404 (3) 0.0583 (18)
H6 0.7105 0.7530 0.1756 0.070*
C7 0.5344 (5) 0.9112 (5) 0.2578 (3) 0.0512 (17)
C8 0.6274 (5) 0.9386 (6) 0.2829 (3) 0.0610 (19)
H8 0.6793 0.9041 0.2652 0.073*
C9 0.6440 (6) 1.0154 (6) 0.3332 (4) 0.070 (2)
H9 0.7066 1.0337 0.3487 0.084*
C10 0.5692 (7) 1.0643 (7) 0.3602 (4) 0.077 (2)
H10 0.5807 1.1151 0.3950 0.092*
C11 0.4772 (6) 1.0403 (7) 0.3370 (4) 0.083 (3)
H11 0.4262 1.0753 0.3554 0.100*
C12 0.4599 (5) 0.9630 (6) 0.2857 (3) 0.067 (2)
H12 0.3970 0.9462 0.2702 0.080*
C13 0.5397 (5) 0.6851 (5) 0.2224 (3) 0.0527 (17)
C14 0.5584 (6) 0.6645 (6) 0.2916 (4) 0.077 (2)
H14 0.5589 0.7206 0.3234 0.092*
C15 0.5764 (7) 0.5595 (8) 0.3144 (5) 0.105 (3)
H15 0.5880 0.5459 0.3614 0.126*
C16 0.5774 (8) 0.4772 (8) 0.2688 (5) 0.106 (3)
H16 0.5910 0.4078 0.2845 0.127*
C17 0.5585 (7) 0.4957 (7) 0.2005 (5) 0.094 (3)
H17 0.5586 0.4392 0.1691 0.113*
C18 0.5394 (6) 0.5986 (6) 0.1781 (4) 0.075 (2)
H18 0.5257 0.6105 0.1311 0.090*
C19 0.3094 (4) 0.5817 (5) 0.0445 (3) 0.0479 (16)
C20 0.2846 (5) 0.5319 (6) 0.1046 (4) 0.067 (2)
H20 0.2710 0.5738 0.1422 0.080*
C21 0.2797 (6) 0.4224 (7) 0.1093 (4) 0.077 (2)
H21 0.2616 0.3908 0.1496 0.092*
C22 0.3010 (6) 0.3593 (7) 0.0560 (4) 0.077 (2)
H22 0.2961 0.2849 0.0593 0.092*
C23 0.3296 (6) 0.4054 (7) −0.0029 (4) 0.081 (2)
H23 0.3467 0.3624 −0.0392 0.097*
C24 0.3332 (5) 0.5159 (6) −0.0084 (4) 0.066 (2)
H24 0.3521 0.5466 −0.0488 0.080*
C25 0.1693 (5) 0.7425 (6) 0.0208 (3) 0.0487 (16)
C26 0.1270 (5) 0.8370 (6) 0.0406 (4) 0.070 (2)
H26 0.1638 0.8891 0.0645 0.084*
C27 0.0280 (6) 0.8544 (8) 0.0245 (4) 0.083 (3)
H27 −0.0007 0.9177 0.0380 0.099*
C28 −0.0256 (6) 0.7771 (8) −0.0113 (4) 0.079 (2)
H28 −0.0904 0.7894 −0.0235 0.095*
C29 0.0150 (5) 0.6832 (7) −0.0291 (4) 0.073 (2)
H29 −0.0223 0.6302 −0.0520 0.088*
C30 0.1115 (5) 0.6663 (6) −0.0133 (3) 0.0610 (19)
H30 0.1386 0.6016 −0.0259 0.073*
C31 0.3468 (5) 0.7605 (5) −0.0425 (3) 0.0512 (17)
C32 0.4439 (5) 0.7700 (6) −0.0454 (4) 0.065 (2)
H32 0.4840 0.7570 −0.0057 0.078*
C33 0.4846 (6) 0.7984 (6) −0.1059 (4) 0.074 (2)
H33 0.5509 0.8030 −0.1069 0.089*
C34 0.4255 (6) 0.8195 (7) −0.1639 (4) 0.076 (2)
H34 0.4519 0.8389 −0.2046 0.091*
C35 0.3292 (6) 0.8125 (7) −0.1625 (4) 0.080 (2)
H35 0.2896 0.8278 −0.2021 0.096*
C36 0.2894 (5) 0.7826 (6) −0.1026 (3) 0.067 (2)
H36 0.2231 0.7771 −0.1023 0.080*
B1 0.2480 (10) 1.0703 (10) 0.1638 (6) 0.086 (3)
F1 0.3118 (4) 1.0059 (4) 0.1338 (2) 0.0998 (15)
F2 0.206 (2) 1.010 (2) 0.2129 (18) 0.108 (7) 0.67 (6)
F3 0.3076 (17) 1.150 (2) 0.1979 (18) 0.134 (9) 0.67 (6)
F4 0.188 (2) 1.115 (3) 0.1190 (10) 0.134 (10) 0.67 (6)
F2' 0.258 (5) 1.174 (2) 0.162 (3) 0.138 (17) 0.33 (6)
F3' 0.155 (3) 1.054 (5) 0.123 (3) 0.125 (15) 0.33 (6)
F4' 0.232 (5) 1.050 (6) 0.228 (2) 0.110 (15) 0.33 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0530 (5) 0.0605 (6) 0.0401 (5) 0.0008 (4) −0.0054 (3) −0.0045 (4)
O1 0.121 (4) 0.076 (4) 0.069 (3) −0.003 (3) 0.034 (3) 0.015 (3)
P1 0.0515 (10) 0.0508 (11) 0.0342 (9) 0.0055 (9) −0.0063 (7) −0.0053 (8)
P2 0.0489 (10) 0.0510 (11) 0.0378 (9) 0.0044 (8) −0.0063 (7) −0.0019 (8)
C1 0.053 (4) 0.044 (4) 0.040 (4) −0.001 (3) −0.005 (3) −0.009 (3)
C2 0.068 (5) 0.055 (5) 0.058 (4) 0.013 (4) −0.003 (4) 0.000 (4)
C3 0.085 (6) 0.058 (5) 0.062 (5) −0.002 (5) 0.004 (4) 0.008 (4)
C4 0.082 (6) 0.059 (5) 0.063 (5) −0.002 (4) 0.016 (4) −0.004 (4)
C5 0.062 (5) 0.075 (6) 0.069 (5) 0.012 (4) 0.009 (4) −0.012 (4)
C6 0.066 (5) 0.059 (5) 0.050 (4) 0.010 (4) 0.000 (4) 0.003 (3)
C7 0.063 (4) 0.052 (4) 0.037 (4) 0.004 (4) −0.005 (3) −0.007 (3)
C8 0.067 (5) 0.067 (5) 0.048 (4) 0.001 (4) −0.008 (3) −0.011 (4)
C9 0.080 (5) 0.072 (6) 0.056 (5) −0.007 (5) −0.010 (4) −0.012 (4)
C10 0.110 (7) 0.069 (6) 0.050 (5) −0.006 (5) 0.002 (5) −0.019 (4)
C11 0.089 (6) 0.089 (7) 0.074 (6) 0.004 (5) 0.022 (5) −0.032 (5)
C12 0.070 (5) 0.075 (5) 0.055 (4) 0.002 (4) 0.002 (4) −0.020 (4)
C13 0.059 (4) 0.055 (5) 0.042 (4) −0.001 (4) −0.006 (3) −0.002 (3)
C14 0.108 (6) 0.060 (5) 0.058 (5) −0.002 (5) −0.016 (4) 0.003 (4)
C15 0.161 (10) 0.080 (7) 0.068 (6) 0.000 (7) −0.028 (6) 0.024 (5)
C16 0.153 (9) 0.062 (6) 0.097 (8) 0.014 (6) −0.023 (7) 0.016 (6)
C17 0.136 (8) 0.060 (6) 0.085 (7) 0.013 (6) −0.007 (6) −0.004 (5)
C18 0.105 (6) 0.059 (5) 0.059 (5) 0.016 (5) −0.004 (4) 0.002 (4)
C19 0.050 (4) 0.053 (4) 0.040 (4) 0.006 (3) −0.001 (3) 0.000 (3)
C20 0.088 (6) 0.057 (5) 0.057 (5) 0.009 (4) 0.014 (4) 0.000 (4)
C21 0.099 (6) 0.064 (6) 0.069 (5) 0.007 (5) 0.016 (5) 0.011 (4)
C22 0.096 (6) 0.054 (5) 0.080 (6) 0.010 (5) 0.002 (5) 0.004 (5)
C23 0.107 (7) 0.062 (6) 0.073 (6) 0.014 (5) 0.013 (5) −0.010 (4)
C24 0.084 (5) 0.060 (5) 0.056 (5) 0.011 (4) 0.009 (4) 0.001 (4)
C25 0.052 (4) 0.054 (4) 0.040 (4) 0.013 (3) 0.002 (3) 0.004 (3)
C26 0.070 (5) 0.066 (5) 0.072 (5) 0.013 (4) −0.001 (4) 0.000 (4)
C27 0.077 (6) 0.082 (6) 0.091 (6) 0.035 (5) 0.014 (5) 0.012 (5)
C28 0.060 (5) 0.106 (8) 0.071 (6) 0.017 (5) −0.004 (4) 0.009 (5)
C29 0.052 (4) 0.102 (7) 0.063 (5) 0.002 (5) −0.007 (4) −0.007 (5)
C30 0.054 (4) 0.074 (5) 0.053 (4) 0.009 (4) −0.006 (3) −0.007 (4)
C31 0.057 (4) 0.054 (4) 0.042 (4) 0.000 (3) −0.002 (3) 0.002 (3)
C32 0.063 (5) 0.075 (5) 0.056 (5) 0.003 (4) 0.002 (4) 0.009 (4)
C33 0.067 (5) 0.081 (6) 0.075 (5) 0.004 (4) 0.019 (4) 0.013 (5)
C34 0.091 (6) 0.081 (6) 0.058 (5) −0.002 (5) 0.018 (5) 0.008 (4)
C35 0.088 (6) 0.099 (7) 0.051 (5) −0.011 (5) −0.005 (4) 0.018 (4)
C36 0.063 (5) 0.086 (6) 0.050 (4) −0.009 (4) −0.001 (4) 0.012 (4)
B1 0.123 (10) 0.058 (8) 0.075 (8) 0.007 (8) 0.003 (8) 0.002 (6)
F1 0.111 (4) 0.107 (4) 0.085 (3) 0.013 (3) 0.026 (3) 0.007 (3)
F2 0.131 (14) 0.094 (13) 0.108 (16) 0.015 (9) 0.058 (12) 0.023 (9)
F3 0.134 (12) 0.113 (11) 0.151 (18) −0.001 (10) −0.009 (11) −0.046 (11)
F4 0.139 (14) 0.14 (2) 0.119 (9) 0.048 (15) −0.014 (9) 0.047 (13)
F2' 0.18 (4) 0.097 (19) 0.14 (3) −0.014 (19) −0.01 (3) 0.015 (17)
F3' 0.14 (2) 0.10 (3) 0.13 (2) 0.02 (2) −0.016 (18) −0.024 (19)
F4' 0.15 (3) 0.12 (4) 0.060 (15) 0.02 (3) 0.013 (16) 0.013 (18)

Geometric parameters (Å, °)

Cu1—O1 2.105 (5) C17—H17 0.9300
Cu1—P1 2.2318 (18) C18—H18 0.9300
Cu1—P2 2.2478 (18) C19—C24 1.375 (9)
O1—H1C 0.8500 C19—C20 1.389 (9)
O1—H1D 0.8500 C20—C21 1.366 (10)
P1—C13 1.800 (7) C20—H20 0.9300
P1—C7 1.816 (6) C21—C22 1.349 (10)
P1—C1 1.823 (6) C21—H21 0.9300
P2—C19 1.803 (7) C22—C23 1.368 (10)
P2—C31 1.814 (6) C22—H22 0.9300
P2—C25 1.820 (6) C23—C24 1.377 (10)
C1—C6 1.383 (8) C23—H23 0.9300
C1—C2 1.400 (9) C24—H24 0.9300
C2—C3 1.366 (9) C25—C30 1.380 (9)
C2—H2 0.9300 C25—C26 1.382 (9)
C3—C4 1.357 (10) C26—C27 1.410 (10)
C3—H3 0.9300 C26—H26 0.9300
C4—C5 1.378 (10) C27—C28 1.373 (11)
C4—H4 0.9300 C27—H27 0.9300
C5—C6 1.385 (9) C28—C29 1.355 (11)
C5—H5 0.9300 C28—H28 0.9300
C6—H6 0.9300 C29—C30 1.375 (9)
C7—C12 1.373 (9) C29—H29 0.9300
C7—C8 1.394 (9) C30—H30 0.9300
C8—C9 1.374 (9) C31—C32 1.367 (9)
C8—H8 0.9300 C31—C36 1.390 (9)
C9—C10 1.350 (10) C32—C33 1.391 (9)
C9—H9 0.9300 C32—H32 0.9300
C10—C11 1.362 (10) C33—C34 1.369 (10)
C10—H10 0.9300 C33—H33 0.9300
C11—C12 1.391 (10) C34—C35 1.351 (10)
C11—H11 0.9300 C34—H34 0.9300
C12—H12 0.9300 C35—C36 1.381 (9)
C13—C14 1.374 (9) C35—H35 0.9300
C13—C18 1.377 (9) C36—H36 0.9300
C14—C15 1.393 (11) B1—F4 1.285 (19)
C14—H14 0.9300 B1—F2' 1.30 (3)
C15—C16 1.354 (12) B1—F4' 1.31 (5)
C15—H15 0.9300 B1—F1 1.363 (12)
C16—C17 1.352 (11) B1—F2 1.38 (3)
C16—H16 0.9300 B1—F3 1.42 (2)
C17—C18 1.370 (10) B1—F3' 1.48 (4)
O1—Cu1—P1 115.18 (16) C17—C18—C13 122.6 (7)
O1—Cu1—P2 104.80 (16) C17—C18—H18 118.7
P1—Cu1—P2 133.89 (7) C13—C18—H18 118.7
Cu1—O1—H1C 106.5 C24—C19—C20 117.0 (7)
Cu1—O1—H1D 139.8 C24—C19—P2 124.6 (5)
H1C—O1—H1D 108.6 C20—C19—P2 118.1 (5)
C13—P1—C7 106.4 (3) C21—C20—C19 121.1 (7)
C13—P1—C1 104.2 (3) C21—C20—H20 119.4
C7—P1—C1 102.2 (3) C19—C20—H20 119.4
C13—P1—Cu1 106.8 (2) C22—C21—C20 120.8 (8)
C7—P1—Cu1 119.8 (2) C22—C21—H21 119.6
C1—P1—Cu1 116.1 (2) C20—C21—H21 119.6
C19—P2—C31 104.8 (3) C21—C22—C23 119.7 (8)
C19—P2—C25 101.7 (3) C21—C22—H22 120.2
C31—P2—C25 103.9 (3) C23—C22—H22 120.2
C19—P2—Cu1 110.4 (2) C22—C23—C24 119.8 (8)
C31—P2—Cu1 119.0 (2) C22—C23—H23 120.1
C25—P2—Cu1 115.2 (2) C24—C23—H23 120.1
C6—C1—C2 118.0 (6) C19—C24—C23 121.5 (7)
C6—C1—P1 123.7 (5) C19—C24—H24 119.2
C2—C1—P1 118.3 (5) C23—C24—H24 119.2
C3—C2—C1 121.3 (7) C30—C25—C26 118.0 (6)
C3—C2—H2 119.4 C30—C25—P2 123.2 (5)
C1—C2—H2 119.4 C26—C25—P2 118.8 (6)
C4—C3—C2 120.3 (7) C25—C26—C27 120.2 (8)
C4—C3—H3 119.8 C25—C26—H26 119.9
C2—C3—H3 119.8 C27—C26—H26 119.9
C3—C4—C5 119.8 (7) C28—C27—C26 119.4 (8)
C3—C4—H4 120.1 C28—C27—H27 120.3
C5—C4—H4 120.1 C26—C27—H27 120.3
C4—C5—C6 120.7 (7) C29—C28—C27 120.6 (8)
C4—C5—H5 119.7 C29—C28—H28 119.7
C6—C5—H5 119.7 C27—C28—H28 119.7
C1—C6—C5 119.9 (6) C28—C29—C30 119.8 (8)
C1—C6—H6 120.0 C28—C29—H29 120.1
C5—C6—H6 120.0 C30—C29—H29 120.1
C12—C7—C8 117.6 (6) C29—C30—C25 121.9 (7)
C12—C7—P1 119.6 (5) C29—C30—H30 119.0
C8—C7—P1 122.8 (5) C25—C30—H30 119.0
C9—C8—C7 121.3 (7) C32—C31—C36 117.2 (6)
C9—C8—H8 119.4 C32—C31—P2 119.7 (5)
C7—C8—H8 119.4 C36—C31—P2 123.0 (5)
C10—C9—C8 119.8 (7) C31—C32—C33 122.0 (7)
C10—C9—H9 120.1 C31—C32—H32 119.0
C8—C9—H9 120.1 C33—C32—H32 119.0
C9—C10—C11 120.9 (7) C34—C33—C32 118.9 (7)
C9—C10—H10 119.6 C34—C33—H33 120.5
C11—C10—H10 119.6 C32—C33—H33 120.5
C10—C11—C12 119.6 (7) C35—C34—C33 120.6 (7)
C10—C11—H11 120.2 C35—C34—H34 119.7
C12—C11—H11 120.2 C33—C34—H34 119.7
C7—C12—C11 120.8 (7) C34—C35—C36 120.1 (7)
C7—C12—H12 119.6 C34—C35—H35 120.0
C11—C12—H12 119.6 C36—C35—H35 120.0
C14—C13—C18 117.2 (7) C35—C36—C31 121.2 (7)
C14—C13—P1 123.8 (6) C35—C36—H36 119.4
C18—C13—P1 118.9 (5) C31—C36—H36 119.4
C13—C14—C15 120.0 (8) F4—B1—F1 112.3 (13)
C13—C14—H14 120.0 F4—B1—F2 114.1 (18)
C15—C14—H14 120.0 F1—B1—F2 107.7 (14)
C16—C15—C14 120.7 (8) F4—B1—F3 110.3 (14)
C16—C15—H15 119.6 F1—B1—F3 103.1 (12)
C14—C15—H15 119.6 F2—B1—F3 108.8 (13)
C17—C16—C15 120.2 (9) F2'—B1—F4' 104 (3)
C17—C16—H16 119.9 F2'—B1—F3' 103 (2)
C15—C16—H16 119.9 F4'—B1—F3' 106 (3)
C16—C17—C18 119.2 (8) F1—B1—F3' 105.6 (16)
C16—C17—H17 120.4 F2'—B1—F1 120 (2)
C18—C17—H17 120.4 F4'—B1—F1 117 (3)
O1—Cu1—P1—C13 75.2 (3) C13—C14—C15—C16 1.1 (15)
P2—Cu1—P1—C13 −72.4 (2) C14—C15—C16—C17 −1.5 (17)
O1—Cu1—P1—C7 −45.7 (3) C15—C16—C17—C18 0.6 (17)
P2—Cu1—P1—C7 166.8 (2) C16—C17—C18—C13 0.8 (15)
O1—Cu1—P1—C1 −169.2 (3) C14—C13—C18—C17 −1.3 (12)
P2—Cu1—P1—C1 43.3 (3) P1—C13—C18—C17 −177.8 (7)
O1—Cu1—P2—C19 −83.8 (3) C31—P2—C19—C24 −10.6 (7)
P1—Cu1—P2—C19 66.0 (2) C25—P2—C19—C24 97.4 (6)
O1—Cu1—P2—C31 155.1 (3) Cu1—P2—C19—C24 −139.8 (5)
P1—Cu1—P2—C31 −55.1 (3) C31—P2—C19—C20 175.1 (5)
O1—Cu1—P2—C25 30.6 (3) C25—P2—C19—C20 −76.9 (6)
P1—Cu1—P2—C25 −179.5 (2) Cu1—P2—C19—C20 45.8 (6)
C13—P1—C1—C6 −26.4 (6) C24—C19—C20—C21 −3.0 (11)
C7—P1—C1—C6 84.2 (6) P2—C19—C20—C21 171.7 (6)
Cu1—P1—C1—C6 −143.5 (5) C19—C20—C21—C22 1.4 (13)
C13—P1—C1—C2 156.7 (5) C20—C21—C22—C23 1.4 (13)
C7—P1—C1—C2 −92.7 (5) C21—C22—C23—C24 −2.4 (13)
Cu1—P1—C1—C2 39.6 (6) C20—C19—C24—C23 2.0 (11)
C6—C1—C2—C3 1.0 (10) P2—C19—C24—C23 −172.4 (6)
P1—C1—C2—C3 178.1 (6) C22—C23—C24—C19 0.7 (12)
C1—C2—C3—C4 −0.8 (11) C19—P2—C25—C30 −28.7 (6)
C2—C3—C4—C5 −0.3 (12) C31—P2—C25—C30 80.0 (6)
C3—C4—C5—C6 1.1 (11) Cu1—P2—C25—C30 −148.0 (5)
C2—C1—C6—C5 −0.2 (10) C19—P2—C25—C26 153.1 (5)
P1—C1—C6—C5 −177.1 (5) C31—P2—C25—C26 −98.3 (6)
C4—C5—C6—C1 −0.8 (11) Cu1—P2—C25—C26 33.7 (6)
C13—P1—C7—C12 −111.1 (6) C30—C25—C26—C27 −1.5 (10)
C1—P1—C7—C12 139.9 (6) P2—C25—C26—C27 176.8 (6)
Cu1—P1—C7—C12 10.0 (7) C25—C26—C27—C28 −0.4 (12)
C13—P1—C7—C8 72.0 (6) C26—C27—C28—C29 2.3 (13)
C1—P1—C7—C8 −37.0 (6) C27—C28—C29—C30 −2.2 (12)
Cu1—P1—C7—C8 −166.9 (5) C28—C29—C30—C25 0.2 (11)
C12—C7—C8—C9 −0.7 (10) C26—C25—C30—C29 1.6 (10)
P1—C7—C8—C9 176.2 (6) P2—C25—C30—C29 −176.6 (5)
C7—C8—C9—C10 1.3 (11) C19—P2—C31—C32 −81.9 (6)
C8—C9—C10—C11 −1.5 (13) C25—P2—C31—C32 171.8 (6)
C9—C10—C11—C12 1.1 (13) Cu1—P2—C31—C32 42.0 (7)
C8—C7—C12—C11 0.3 (11) C19—P2—C31—C36 100.8 (6)
P1—C7—C12—C11 −176.7 (6) C25—P2—C31—C36 −5.5 (7)
C10—C11—C12—C7 −0.5 (13) Cu1—P2—C31—C36 −135.3 (6)
C7—P1—C13—C14 12.0 (7) C36—C31—C32—C33 −1.2 (11)
C1—P1—C13—C14 119.6 (6) P2—C31—C32—C33 −178.7 (6)
Cu1—P1—C13—C14 −117.1 (6) C31—C32—C33—C34 1.3 (12)
C7—P1—C13—C18 −171.7 (6) C32—C33—C34—C35 −0.3 (13)
C1—P1—C13—C18 −64.2 (6) C33—C34—C35—C36 −0.7 (13)
Cu1—P1—C13—C18 59.2 (6) C34—C35—C36—C31 0.8 (13)
C18—C13—C14—C15 0.3 (12) C32—C31—C36—C35 0.1 (11)
P1—C13—C14—C15 176.6 (7) P2—C31—C36—C35 177.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1C···F2 0.85 1.87 2.71 (3) 171
O1—H1D···F3i 0.85 1.98 2.82 (3) 171
C28—H28···F4ii 0.93 2.51 3.25 (3) 137

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2555).

References

  1. Barron, P. F., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1099–1106.
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Engelhardt, L. M., Pakawatchai, C., White, A. H. & Healy, P. C. (1985). J. Chem. Soc. Dalton Trans. pp. 125–133.
  4. Fu, W.-F., Gan, X., Che, C.-M., Cao, Q.-Y., Zhou, Z.-Y. & Zhu, N.-Y. (2004). Chem. Eur. J.10, 2228–2236. [DOI] [PubMed]
  5. Kirchhoff, J. R., McMillin, D. R., Robinson, W. R., Powell, D. R., McKenzie, A. T. & Chen, S. (1985). Inorg. Chem.24, 3928–2933.
  6. Mao, Z., Chao, H.-Y., Hui, Z., Che, C.-M., Fu, W.-F., Cheung, K.-K. & Zhu, N. (2003). Chem. Eur. J.9, 2885–2997. [DOI] [PubMed]
  7. Meng, X.-T., Li, Q.-S., Xu, F.-B., Song, H.-B., Anson, C. E. & Zhang, Z.-Z. (2006). Inorg. Chem.45, 7986–7987. [DOI] [PubMed]
  8. Moudam, O., Kaeser, A., Delavaux-Nicot, B., Duhayon, C., Holler, M., Accorsi, G., Armaroli, N., Seguy, I., Navarro, J., Destruel, P. & Nierengarten, J. (2007). Chem. Commun. pp. 3077–3079. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Zhang, Q., Zhou, Q., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). Adv. Mater.16, 432–436.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029559/xu2555sup1.cif

e-65-m1001-sup1.cif (28.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029559/xu2555Isup2.hkl

e-65-m1001-Isup2.hkl (289.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES