Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 31;65(Pt 8):o2056. doi: 10.1107/S1600536809029791

N-(2,4,6-Trimethyl­phen­yl)succinamic acid

B Thimme Gowda a,*, Sabine Foro b, B S Saraswathi a, Hartmut Fuess b
PMCID: PMC2977192  PMID: 21583718

Abstract

The amide bond in the title compound {systematic name: 3-[(2,4,6-trimethyl­phen­yl)amino­carbon­yl]propionic acid}, C13H17NO3, has a trans conformation. In the crystal, two mol­ecules form a centrosymmetric dimer connected by pairs of O—H⋯O hydrogen bonds. Inter­molecular N—H⋯O hydrogen bonds link the dimers into a three dimensional network.

Related literature

For related structures, see: Gowda et al. (2009a,b,c ); Jagannathan et al. (1994). For the modes of inter­linking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976).graphic file with name e-65-o2056-scheme1.jpg

Experimental

Crystal data

  • C13H17NO3

  • M r = 235.28

  • Triclinic, Inline graphic

  • a = 4.7646 (4) Å

  • b = 10.859 (1) Å

  • c = 13.111 (2) Å

  • α = 70.217 (8)°

  • β = 86.158 (8)°

  • γ = 79.351 (8)°

  • V = 627.31 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 299 K

  • 0.55 × 0.25 × 0.08 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.692, T max = 0.945

  • 3109 measured reflections

  • 2234 independent reflections

  • 1918 reflections with I > 2σ(I)

  • R int = 0.014

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.145

  • S = 1.05

  • 2234 reflections

  • 182 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029791/bt5016sup1.cif

e-65-o2056-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029791/bt5016Isup2.hkl

e-65-o2056-Isup2.hkl (109.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (2) 2.10 (2) 2.9368 (18) 163.6 (19)
O2—H2O⋯O3ii 0.88 (3) 1.80 (3) 2.679 (2) 172 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for a resumption of his research fellowship.

supplementary crystallographic information

Comment

The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of ring and side chain substitutions on the structures of this class of compounds (Gowda et al., 2009a,b,c), the crystal structure of N-(2,4,6-trimethylphenyl)-succinamic acid (I) {systematic name: 3-[(2,4,6-trimethylphenyl)-aminocarbonyl]propionic acid} has been determined. The conformations of N—H and C=O bonds in the amide segment of the structure are trans to each other (Fig.1). But the conformations of the amide O atom and the carbonyl O atom of the acid segment are cis to each other Further, the conformations of the C(O)—C bonds in the N—CO—CH2—CH2—C(O)—OH segment have "trans" and "gauche" torsions with the adjacent C—H bonds.

The C=O and O—H bonds of the acid group are in syn position to each other, similar to that observed in the crystal structures of N-(2,6-dimethylphenyl)- succinamic acid (Gowda et al., 2009b) and N-(2-chlorophenyl)succinamic acid (Gowda et al., 2009a) but in contrast to the anti positions observed in the structure of N-(3,5-dichlorophenyl)succinamic acid(Gowda et al., 2009c)

The torsional angles of the groups, C1 - N1 - C7 - C8, N1 - C7 - C8 - C9, C7 - C8 - C9 - C10 and C8 - C9 - C10 - O2 in the side chain are 180.0 (2)°, -160.5 (2)°, 63.5 (2)° and -174.9 (2)°, respectively. The N—H···O and O—H···O intermolecular hydrogen bonds pack the molecules in the structure into supramolecular chains (Table 1, Fig.2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Experimental

The solution of succinic anhydride (0.025 mole) in toluene (25 cc) was treated dropwise with the solution of 2,4,6-trimethylaniline(0.025 mole) also in toluene (20 cc) with constant stirring. The resulting mixture was stirred for about one h and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,4,6-trimethylaniline. The resultant solid N-(2,4,6-trimethylphenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. The plate like colourless single crystals of the compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

H atoms bonded to C were positioned with idealized geometry using a riding model [C—H = 0.93 Å to 0.97Å] with U(H) set to 1.2Ueq(C). The other H atoms were located in a difference map and their position refined with U(H) set to 1.2Ueq(N,O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling and the displacement ellipsoids are at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonds shown as dashed lines.

Crystal data

C13H17NO3 Z = 2
Mr = 235.28 F(000) = 252
Triclinic, P1 Dx = 1.246 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54180 Å
a = 4.7646 (4) Å Cell parameters from 25 reflections
b = 10.859 (1) Å θ = 4.4–22.9°
c = 13.111 (2) Å µ = 0.72 mm1
α = 70.217 (8)° T = 299 K
β = 86.158 (8)° Plate, colourless
γ = 79.351 (8)° 0.55 × 0.25 × 0.08 mm
V = 627.31 (12) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 1918 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.014
graphite θmax = 67.0°, θmin = 3.6°
ω/2θ scans h = −5→2
Absorption correction: ψ scan (North et al., 1968) k = −12→12
Tmin = 0.692, Tmax = 0.945 l = −15→15
3109 measured reflections 3 standard reflections every 120 min
2234 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0856P)2 + 0.1672P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.004
2234 reflections Δρmax = 0.30 e Å3
182 parameters Δρmin = −0.30 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.016 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3669 (3) 0.77823 (17) 0.30593 (13) 0.0376 (4)
C2 0.5805 (4) 0.67491 (18) 0.36121 (15) 0.0452 (4)
C3 0.6582 (5) 0.6700 (2) 0.46280 (16) 0.0549 (5)
H3 0.804 (5) 0.598 (2) 0.5015 (19) 0.066*
C4 0.5306 (4) 0.7610 (2) 0.51124 (15) 0.0512 (5)
C5 0.3135 (4) 0.8597 (2) 0.45520 (15) 0.0469 (5)
H5 0.225 (5) 0.923 (2) 0.4870 (18) 0.056*
C6 0.2278 (3) 0.87030 (18) 0.35308 (14) 0.0400 (4)
C7 0.4594 (3) 0.81334 (16) 0.11383 (13) 0.0368 (4)
C8 0.3304 (4) 0.8203 (2) 0.00956 (15) 0.0494 (5)
H8A 0.214 (5) 0.912 (2) −0.0210 (18) 0.059*
H8B 0.205 (5) 0.749 (2) 0.0314 (18) 0.059*
C9 0.5540 (4) 0.8015 (2) −0.07431 (16) 0.0543 (5)
H9A 0.683 (5) 0.867 (2) −0.0887 (19) 0.065*
H9B 0.474 (5) 0.815 (2) −0.142 (2) 0.065*
C10 0.7408 (4) 0.6682 (2) −0.04148 (15) 0.0479 (5)
C11 0.7206 (5) 0.5687 (2) 0.31581 (18) 0.0607 (6)
H11A 0.8884 0.5946 0.2757 0.073*
H11B 0.5898 0.5570 0.2686 0.073*
H11C 0.7730 0.4868 0.3741 0.073*
C12 0.6208 (6) 0.7531 (3) 0.62154 (18) 0.0727 (7)
H12A 0.8203 0.7163 0.6316 0.087*
H12B 0.5120 0.6975 0.6763 0.087*
H12C 0.5875 0.8406 0.6270 0.087*
C13 −0.0127 (4) 0.9782 (2) 0.29629 (16) 0.0508 (5)
H13A −0.1896 0.9451 0.3122 0.061*
H13B 0.0210 1.0057 0.2195 0.061*
H13C −0.0227 1.0527 0.3210 0.061*
N1 0.2852 (3) 0.78867 (15) 0.20030 (11) 0.0396 (4)
H1N 0.108 (5) 0.790 (2) 0.1887 (16) 0.047*
O1 0.7050 (2) 0.83144 (14) 0.11738 (10) 0.0497 (4)
O2 0.9467 (3) 0.65764 (18) −0.11116 (13) 0.0680 (5)
H2O 1.049 (6) 0.577 (3) −0.091 (2) 0.082*
O3 0.7089 (3) 0.57886 (15) 0.04196 (13) 0.0631 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0274 (8) 0.0490 (9) 0.0385 (9) −0.0093 (7) 0.0005 (6) −0.0158 (7)
C2 0.0415 (9) 0.0474 (9) 0.0448 (9) −0.0008 (8) −0.0037 (7) −0.0159 (8)
C3 0.0538 (12) 0.0562 (11) 0.0483 (11) 0.0068 (9) −0.0139 (9) −0.0151 (9)
C4 0.0503 (11) 0.0610 (11) 0.0425 (10) −0.0052 (9) −0.0069 (8) −0.0188 (8)
C5 0.0424 (10) 0.0570 (11) 0.0450 (10) −0.0039 (8) 0.0014 (8) −0.0244 (9)
C6 0.0280 (8) 0.0502 (10) 0.0417 (9) −0.0060 (7) 0.0020 (6) −0.0159 (7)
C7 0.0226 (8) 0.0466 (9) 0.0426 (9) −0.0003 (6) −0.0025 (6) −0.0190 (7)
C8 0.0281 (9) 0.0769 (13) 0.0448 (10) 0.0025 (9) −0.0051 (7) −0.0273 (9)
C9 0.0417 (10) 0.0776 (14) 0.0417 (10) 0.0032 (9) −0.0022 (8) −0.0241 (9)
C10 0.0373 (9) 0.0713 (12) 0.0450 (10) −0.0081 (8) 0.0019 (7) −0.0332 (10)
C11 0.0688 (14) 0.0530 (11) 0.0553 (12) 0.0092 (10) −0.0086 (10) −0.0202 (9)
C12 0.0836 (17) 0.0828 (16) 0.0519 (12) 0.0025 (13) −0.0207 (11) −0.0276 (11)
C13 0.0356 (10) 0.0627 (12) 0.0517 (10) 0.0049 (8) −0.0025 (8) −0.0226 (9)
N1 0.0213 (7) 0.0588 (9) 0.0420 (8) −0.0074 (6) −0.0022 (6) −0.0206 (7)
O1 0.0221 (6) 0.0789 (9) 0.0516 (7) −0.0109 (6) −0.0004 (5) −0.0249 (7)
O2 0.0600 (10) 0.0758 (10) 0.0631 (9) 0.0032 (8) 0.0198 (7) −0.0280 (8)
O3 0.0569 (9) 0.0678 (9) 0.0624 (9) −0.0033 (7) 0.0161 (7) −0.0256 (8)

Geometric parameters (Å, °)

C1—C6 1.393 (2) C8—H8B 1.02 (2)
C1—C2 1.395 (2) C9—C10 1.491 (3)
C1—N1 1.426 (2) C9—H9A 0.99 (3)
C2—C3 1.387 (3) C9—H9B 0.94 (3)
C2—C11 1.502 (3) C10—O3 1.215 (2)
C3—C4 1.378 (3) C10—O2 1.311 (2)
C3—H3 0.96 (2) C11—H11A 0.9600
C4—C5 1.385 (3) C11—H11B 0.9600
C4—C12 1.507 (3) C11—H11C 0.9600
C5—C6 1.387 (2) C12—H12A 0.9600
C5—H5 0.94 (2) C12—H12B 0.9600
C6—C13 1.506 (2) C12—H12C 0.9600
C7—O1 1.228 (2) C13—H13A 0.9600
C7—N1 1.341 (2) C13—H13B 0.9600
C7—C8 1.509 (2) C13—H13C 0.9600
C8—C9 1.517 (3) N1—H1N 0.86 (2)
C8—H8A 1.01 (2) O2—H2O 0.88 (3)
C6—C1—C2 121.06 (15) C8—C9—H9A 110.4 (14)
C6—C1—N1 119.24 (15) C10—C9—H9B 107.1 (14)
C2—C1—N1 119.69 (15) C8—C9—H9B 112.8 (15)
C3—C2—C1 117.88 (17) H9A—C9—H9B 106 (2)
C3—C2—C11 119.76 (17) O3—C10—O2 123.15 (19)
C1—C2—C11 122.34 (17) O3—C10—C9 123.67 (17)
C4—C3—C2 122.86 (18) O2—C10—C9 113.17 (18)
C4—C3—H3 119.0 (14) C2—C11—H11A 109.5
C2—C3—H3 118.1 (14) C2—C11—H11B 109.5
C3—C4—C5 117.53 (17) H11A—C11—H11B 109.5
C3—C4—C12 121.54 (19) C2—C11—H11C 109.5
C5—C4—C12 120.93 (19) H11A—C11—H11C 109.5
C4—C5—C6 122.27 (17) H11B—C11—H11C 109.5
C4—C5—H5 118.5 (14) C4—C12—H12A 109.5
C6—C5—H5 119.2 (14) C4—C12—H12B 109.5
C5—C6—C1 118.35 (16) H12A—C12—H12B 109.5
C5—C6—C13 120.18 (16) C4—C12—H12C 109.5
C1—C6—C13 121.46 (15) H12A—C12—H12C 109.5
O1—C7—N1 123.22 (15) H12B—C12—H12C 109.5
O1—C7—C8 121.66 (15) C6—C13—H13A 109.5
N1—C7—C8 115.11 (14) C6—C13—H13B 109.5
C7—C8—C9 112.74 (15) H13A—C13—H13B 109.5
C7—C8—H8A 106.9 (13) C6—C13—H13C 109.5
C9—C8—H8A 107.8 (13) H13A—C13—H13C 109.5
C7—C8—H8B 105.4 (13) H13B—C13—H13C 109.5
C9—C8—H8B 112.3 (13) C7—N1—C1 123.64 (14)
H8A—C8—H8B 111.7 (18) C7—N1—H1N 117.1 (14)
C10—C9—C8 114.18 (18) C1—N1—H1N 118.7 (14)
C10—C9—H9A 106.1 (14) C10—O2—H2O 111.1 (18)
C6—C1—C2—C3 −2.6 (3) N1—C1—C6—C5 −179.01 (15)
N1—C1—C2—C3 178.60 (16) C2—C1—C6—C13 −177.02 (16)
C6—C1—C2—C11 175.73 (18) N1—C1—C6—C13 1.8 (2)
N1—C1—C2—C11 −3.1 (3) O1—C7—C8—C9 20.7 (3)
C1—C2—C3—C4 1.1 (3) N1—C7—C8—C9 −160.51 (18)
C11—C2—C3—C4 −177.3 (2) C7—C8—C9—C10 63.5 (3)
C2—C3—C4—C5 0.9 (3) C8—C9—C10—O3 4.2 (3)
C2—C3—C4—C12 −179.8 (2) C8—C9—C10—O2 −174.88 (17)
C3—C4—C5—C6 −1.3 (3) O1—C7—N1—C1 −1.2 (3)
C12—C4—C5—C6 179.3 (2) C8—C7—N1—C1 179.97 (16)
C4—C5—C6—C1 −0.2 (3) C6—C1—N1—C7 116.28 (19)
C4—C5—C6—C13 179.05 (18) C2—C1—N1—C7 −64.9 (2)
C2—C1—C6—C5 2.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.86 (2) 2.10 (2) 2.9368 (18) 163.6 (19)
O2—H2O···O3ii 0.88 (3) 1.80 (3) 2.679 (2) 172 (3)

Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5016).

References

  1. Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  2. Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o399. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873. [DOI] [PMC free article] [PubMed]
  5. Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr.24, 75–78.
  6. Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.
  7. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029791/bt5016sup1.cif

e-65-o2056-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029791/bt5016Isup2.hkl

e-65-o2056-Isup2.hkl (109.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES