Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 4;65(Pt 8):o1784. doi: 10.1107/S1600536809024659

Biphenyl-4,4′-diyl bis­(2,2,5,5-tetra­methyl-1-oxyl-3-pyrroline-3-carboxyl­ate)

Dominik Margraf a, Denise Schuetz a, Thomas F Prisner a, Jan W Bats b,*
PMCID: PMC2977196  PMID: 21583490

Abstract

In the title compound, C30H34N2O6, the complete molecule is generated by a crystallographic 2/m symmetry operation. The 1-oxyl-3-pyrroline-3-carboxyl­ate group lies on a mirror plane. The dihedral angle between the ring planes of the biphenyl fragment is constrained by symmetry to be zero, resulting in rather short intramolecular H⋯H contact distances of 2.02 Å. In the crystal, molecules are connected along the a-axis direction by very weak intermolecular methyl–phenyl C—H⋯π interactions. The C—H bond is not directed to the center of the benzene ring, but mainly to one C atom [C—H⋯C(x − 1, y, z): H⋯C = 2.91 Å and C—H⋯C = 143°].

Related literature

For the preparation of the title compound see: Weber et al. (2002). For the crystal structures of related compounds see: Boeyens & Kruger (1970); Bolte (2006); Duskova et al. (2001); Godt et al., 2000; Papoutsakis et al. (1999); Wiley et al., 1989 and Wiley et al., 1991.graphic file with name e-65-o1784-scheme1.jpg

Experimental

Crystal data

  • C30H34N2O6

  • M r = 518.59

  • Monoclinic, Inline graphic

  • a = 6.931 (2) Å

  • b = 9.461 (3) Å

  • c = 20.805 (4) Å

  • β = 96.059 (14)°

  • V = 1356.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 169 K

  • 0.44 × 0.30 × 0.10 mm

Data collection

  • Siemens SMART 1K CCD diffractometer

  • Absorption correction: none

  • 11267 measured reflections

  • 2074 independent reflections

  • 1552 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.126

  • S = 1.03

  • 2074 reflections

  • 105 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024659/lh2852sup1.cif

e-65-o1784-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024659/lh2852Isup2.hkl

e-65-o1784-Isup2.hkl (102.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11C⋯C3i 0.98 2.91 3.745 (2) 143

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The title compound was prepared as a reference compound for pulsed electron-electron double resonance measurements (Weber et al., 2002).

The molecular structure is shown in Fig. 1. The molecule has 2/m symmetry: atoms C1, C4, O1, C5, O2, C6, C7, C8, C9, N1 and O3 lie on a mirror plane. There is a twofold axis perpendicular to this mirror plane and passing through the center of the central C—C single bond. There also is an inversion center at the midpoint of the central C—C single bond. The two six-membered rings of the biphenyl group are coplanar by symmetry, resulting in rather short intramolecular H···H contact distances of 2.02 A. The 1-oxyl-3-pyrroline-3-carboxylate group is planar. Approximate planarity of this group also has been observed in a number of related crystal structures (Papoutsakis et al., 1999; Boeyens & Kruger, 1970; Bolte, 2006; Duskova et al., 2001; Godt et al., 2000; Wiley et al., 1989 and Wiley et al., 1991)

The crystal packing is shown in Fig 2. The molecules are connected along the a-direction by four symmetry-equivalent very weak intermolecular Cmethyl—H···π(phenyl) interactions (Table 1). The Cmethyl—H bond is not directed to the center of the phenyl ring, but mainly to one C atom. There are no other short intermolecular contacts.

Experimental

The title compound was prepared similar to the procedure described by Weber et al. (2002). Single crystals were obtained by recrystallization of the compound from a mixture of toluene and n-hexane (3:1).

Refinement

The H atoms were positioned geometrically and treated as riding: Cmethyl—H=0.98 Å, Cplanar—H=0.95 Å, Uiso(H)=1.2Ueq(Cnon-methyl) and Uiso(H)=1.5Ueq(Cmethyl). The torsion angles about the C—Cmethyl bonds were refined for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound shown with 50% probability displacement ellipsoids. The H atoms are drawn as small spheres of arbitrary radius. Symmetry equivalent atoms are related by i: x, -y, z, ii: 2 - x, -y, 1 - z and iii: 2 - x, y, 1 - z.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed down the a axis.

Crystal data

C30H34N2O6 F(000) = 552
Mr = 518.59 Dx = 1.270 Mg m3
Monoclinic, C2/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 77 reflections
a = 6.931 (2) Å θ = 3–23°
b = 9.461 (3) Å µ = 0.09 mm1
c = 20.805 (4) Å T = 169 K
β = 96.059 (14)° Plate, yellow
V = 1356.6 (6) Å3 0.44 × 0.30 × 0.10 mm
Z = 2

Data collection

Siemens SMART 1K CCD diffractometer 1552 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tube Rint = 0.056
graphite θmax = 30.5°, θmin = 2.0°
ω scans h = −9→9
11267 measured reflections k = −13→12
2074 independent reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.06P)2 + 0.9P] where P = (Fo2 + 2Fc2)/3
2074 reflections (Δ/σ)max = 0.001
105 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.58234 (19) 0.0000 0.29187 (6) 0.0310 (3)
O2 0.2989 (2) 0.0000 0.33551 (6) 0.0396 (4)
O3 −0.0951 (2) 0.0000 0.09831 (7) 0.0323 (3)
N1 0.0672 (2) 0.0000 0.13356 (7) 0.0231 (3)
C1 0.9329 (3) 0.0000 0.46943 (8) 0.0231 (4)
C2 0.8678 (2) 0.12604 (16) 0.43958 (6) 0.0317 (3)
H2A 0.9076 0.2135 0.4592 0.038*
C3 0.7462 (2) 0.12691 (16) 0.38187 (7) 0.0321 (3)
H3A 0.7036 0.2137 0.3622 0.039*
C4 0.6887 (3) 0.0000 0.35376 (8) 0.0261 (4)
C5 0.3862 (3) 0.0000 0.28870 (8) 0.0211 (4)
C6 0.2971 (2) 0.0000 0.22093 (8) 0.0179 (3)
C7 0.3911 (3) 0.0000 0.16826 (8) 0.0190 (3)
H7A 0.5285 0.0000 0.1696 0.023*
C8 0.2570 (3) 0.0000 0.10658 (8) 0.0205 (3)
C9 0.0794 (2) 0.0000 0.20539 (8) 0.0185 (3)
C10 0.2784 (2) 0.13302 (16) 0.06612 (7) 0.0324 (3)
H10A 0.1799 0.1325 0.0287 0.049*
H10B 0.4079 0.1348 0.0512 0.049*
H10C 0.2611 0.2169 0.0925 0.049*
C11 −0.01778 (19) 0.13337 (14) 0.22809 (7) 0.0261 (3)
H11A −0.1535 0.1360 0.2093 0.039*
H11B 0.0503 0.2170 0.2142 0.039*
H11C −0.0125 0.1327 0.2753 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0170 (6) 0.0590 (9) 0.0159 (6) 0.000 −0.0032 (5) 0.000
O2 0.0240 (7) 0.0753 (12) 0.0194 (6) 0.000 0.0022 (5) 0.000
O3 0.0215 (7) 0.0429 (8) 0.0295 (7) 0.000 −0.0116 (5) 0.000
N1 0.0176 (7) 0.0302 (8) 0.0200 (7) 0.000 −0.0050 (5) 0.000
C1 0.0194 (8) 0.0309 (9) 0.0182 (8) 0.000 −0.0018 (6) 0.000
C2 0.0363 (8) 0.0306 (7) 0.0256 (7) 0.0027 (6) −0.0087 (6) −0.0022 (5)
C3 0.0340 (8) 0.0360 (8) 0.0244 (6) 0.0067 (6) −0.0066 (5) 0.0026 (6)
C4 0.0166 (8) 0.0452 (11) 0.0157 (8) 0.000 −0.0023 (6) 0.000
C5 0.0183 (8) 0.0246 (8) 0.0195 (8) 0.000 −0.0017 (6) 0.000
C6 0.0164 (7) 0.0172 (7) 0.0192 (8) 0.000 −0.0020 (6) 0.000
C7 0.0179 (8) 0.0188 (8) 0.0193 (8) 0.000 −0.0021 (6) 0.000
C8 0.0211 (8) 0.0226 (8) 0.0169 (7) 0.000 −0.0015 (6) 0.000
C9 0.0159 (7) 0.0193 (8) 0.0199 (8) 0.000 −0.0006 (6) 0.000
C10 0.0376 (8) 0.0321 (7) 0.0262 (7) −0.0044 (6) −0.0032 (6) 0.0093 (6)
C11 0.0200 (6) 0.0234 (6) 0.0346 (7) 0.0024 (5) 0.0012 (5) −0.0035 (5)

Geometric parameters (Å, °)

O1—C5 1.354 (2) C6—C7 1.332 (2)
O1—C4 1.414 (2) C6—C9 1.509 (2)
O2—C5 1.199 (2) C7—C8 1.503 (2)
O3—N1 1.2766 (19) C7—H7A 0.9500
N1—C8 1.484 (2) C8—C10i 1.5299 (17)
N1—C9 1.488 (2) C8—C10 1.5299 (17)
C1—C2i 1.3970 (17) C9—C11 1.5285 (16)
C1—C2 1.3971 (17) C9—C11i 1.5285 (16)
C1—C1ii 1.495 (3) C10—H10A 0.9800
C2—C3 1.3922 (19) C10—H10B 0.9800
C2—H2A 0.9500 C10—H10C 0.9800
C3—C4 1.3760 (17) C11—H11A 0.9800
C3—H3A 0.9500 C11—H11B 0.9800
C4—C3i 1.3761 (17) C11—H11C 0.9800
C5—C6 1.478 (2)
C5—O1—C4 117.92 (14) N1—C8—C7 99.78 (13)
O3—N1—C8 123.07 (14) N1—C8—C10i 110.45 (10)
O3—N1—C9 122.02 (15) C7—C8—C10i 112.51 (9)
C8—N1—C9 114.91 (13) N1—C8—C10 110.45 (10)
C2i—C1—C2 117.19 (16) C7—C8—C10 112.51 (9)
C2i—C1—C1ii 121.40 (8) C10i—C8—C10 110.69 (15)
C2—C1—C1ii 121.40 (8) N1—C9—C6 99.50 (13)
C3—C2—C1 121.74 (13) N1—C9—C11 109.27 (9)
C3—C2—H2A 119.1 C6—C9—C11 113.40 (9)
C1—C2—H2A 119.1 N1—C9—C11i 109.28 (9)
C4—C3—C2 118.90 (13) C6—C9—C11i 113.40 (9)
C4—C3—H3A 120.6 C11—C9—C11i 111.28 (15)
C2—C3—H3A 120.6 C8—C10—H10A 109.5
C3—C4—C3i 121.52 (17) C8—C10—H10B 109.5
C3—C4—O1 119.12 (8) H10A—C10—H10B 109.5
C3i—C4—O1 119.12 (8) C8—C10—H10C 109.5
O2—C5—O1 123.36 (16) H10A—C10—H10C 109.5
O2—C5—C6 125.39 (17) H10B—C10—H10C 109.5
O1—C5—C6 111.25 (14) C9—C11—H11A 109.5
C7—C6—C5 126.39 (16) C9—C11—H11B 109.5
C7—C6—C9 112.83 (14) H11A—C11—H11B 109.5
C5—C6—C9 120.78 (14) C9—C11—H11C 109.5
C6—C7—C8 112.99 (16) H11A—C11—H11C 109.5
C6—C7—H7A 123.5 H11B—C11—H11C 109.5
C8—C7—H7A 123.5
C2i—C1—C2—C3 −1.2 (3) C9—N1—C8—C10i 118.61 (10)
C1ii—C1—C2—C3 178.55 (19) O3—N1—C8—C10 61.39 (10)
C1—C2—C3—C4 0.1 (2) C9—N1—C8—C10 −118.61 (10)
C2—C3—C4—C3i 1.0 (3) C6—C7—C8—N1 0.0
C2—C3—C4—O1 −173.34 (14) C6—C7—C8—C10i −117.08 (11)
C5—O1—C4—C3 −92.77 (15) C6—C7—C8—C10 117.08 (11)
C5—O1—C4—C3i 92.77 (15) O3—N1—C9—C6 180.0
C4—O1—C5—O2 0.0 C8—N1—C9—C6 0.0
C4—O1—C5—C6 180.0 O3—N1—C9—C11 −60.99 (10)
O2—C5—C6—C7 180.0 C8—N1—C9—C11 119.01 (10)
O1—C5—C6—C7 0.0 O3—N1—C9—C11i 60.99 (10)
O2—C5—C6—C9 0.0 C8—N1—C9—C11i −119.01 (10)
O1—C5—C6—C9 180.0 C7—C6—C9—N1 0.0
C5—C6—C7—C8 180.0 C5—C6—C9—N1 180.0
C9—C6—C7—C8 0.0 C7—C6—C9—C11 −115.91 (11)
O3—N1—C8—C7 180.0 C5—C6—C9—C11 64.09 (11)
C9—N1—C8—C7 0.0 C7—C6—C9—C11i 115.92 (11)
O3—N1—C8—C10i −61.39 (10) C5—C6—C9—C11i −64.08 (11)

Symmetry codes: (i) x, −y, z; (ii) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C11—H11C···C3iii 0.98 2.91 3.745 (2) 143

Symmetry codes: (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2852).

References

  1. Boeyens, J. C. A. & Kruger, G. J. (1970). Acta Cryst. B26, 668–672.
  2. Bolte, M. (2006). Acta Cryst. E62, m1609–m1610.
  3. Duskova, J., Labsky, J., Hasek, J. & Cisarova, I. (2001). Acta Cryst. E57, o85–o86.
  4. Godt, A., Franzen, C., Veit, S., Enkelmann, V., Pannier, M. & Jeschke, G. (2000). J. Org. Chem.65, 7575–7582. [DOI] [PubMed]
  5. Papoutsakis, D., Kirby, J. P., Jackson, J. E. & Nocera, D. G. (1999). Chem. Eur. J.5, 1474–1480.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Siemens (1995). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  8. Weber, A., Schiemann, O., Bode, B. & Prisner, T. F. (2002). J. Magn. Reson.157, 277–285. [DOI] [PubMed]
  9. Wiley, D. W., Calabrese, J. C., Harlow, R. L. & Miller, J. S. (1991). Angew. Chem. Int. Ed.30, 450–452.
  10. Wiley, D. W., Calabrese, J. C. & Miller, J. S. (1989). Chem. Commun. pp. 1523–1526.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024659/lh2852sup1.cif

e-65-o1784-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024659/lh2852Isup2.hkl

e-65-o1784-Isup2.hkl (102.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES