Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 1;65(Pt 8):o1722. doi: 10.1107/S1600536809024519

3-[(3,4-Dichloro­phen­yl)amino­carbon­yl]propionic acid monohydrate

B Thimme Gowda a,*, Sabine Foro b, B S Saraswathi a, Hartmut Fuess b
PMCID: PMC2977205  PMID: 21583439

Abstract

In the crystal structure of the title compound, C10H9Cl2NO3·H2O, the conformations of the amide O atom and the carbonyl O atom of the acid segment are anti to the H atoms of adjacent –CH2 groups. In the crystal, the mol­ecules are linked into a three-dimensional network through N—H⋯O and O—H⋯O inter­molecular hydrogen bonds.

Related literature

For related structures, see: Gowda et al. (2009a,b,c ). For hydrogen bonds involving carboxylic acids, see: Jagannathan et al. (1994); Leiserowitz (1976). For the modeling of water H atoms, see: Nardelli (1999).graphic file with name e-65-o1722-scheme1.jpg

Experimental

Crystal data

  • C10H9Cl2NO3·H2O

  • M r = 280.10

  • Monoclinic, Inline graphic

  • a = 9.5634 (9) Å

  • b = 7.4527 (7) Å

  • c = 17.292 (2) Å

  • β = 104.35 (2)°

  • V = 1194.0 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.95 mm−1

  • T = 299 K

  • 0.55 × 0.50 × 0.40 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.098, T max = 0.138

  • 2508 measured reflections

  • 2129 independent reflections

  • 2052 reflections with I > 2σ(I)

  • R int = 0.072

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.083

  • wR(F 2) = 0.212

  • S = 1.08

  • 2129 reflections

  • 167 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024519/ci2838sup1.cif

e-65-o1722-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024519/ci2838Isup2.hkl

e-65-o1722-Isup2.hkl (104.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O4i 0.88 (3) 1.79 (3) 2.672 (4) 177 (5)
N1—H1N⋯O3ii 0.84 (3) 2.11 (3) 2.941 (4) 168 (4)
O4—H41⋯O1iii 0.82 (3) 2.11 (4) 2.894 (4) 162 (5)
O4—H42⋯O1iv 0.84 (3) 2.09 (3) 2.881 (4) 156 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

As a part of studying the effect of ring and side chain substitutions on the structures of aromatic amides (Gowda et al., 2009a,b,c), the crystal structure of N-(3,4-dichlorophenyl)succinamic acid monohydrate (I), systematic name: 3-[(3,4-dichloro)-aminocarbonyl]propionic acid monohydrate has been determined. The conformation of the N—H bond is anti to both the 3-chloro substituent in the aromatic ring and the C═O bond in the amide segment of the structure. Further, the amide O atom and the carbonyl O atom of the acid segment are anti to each other and are also anti to H atoms attached to the adjacent C atoms (Fig.1). Further, C═O and O—H bonds of the acid group are syn to each other, contrary to the anti position observed in 3-[(3,5-dichloro)-aminocarbonyl]propionic acid (Gowda et al., 2009c). The observed anti position with the latter may be due to the hydrogen bond donated to the amide carbonyl group by the acid segment, which is prevented in the present structure due to the H-bonding effect of hydration. The N—H···O and O—H···O intermolecular hydrogen bonds link the molecules into a three-dimensional network (Table 1 and Fig.2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen-bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Experimental

The solution of succinic anhydride (0.02 mol) in toluene (25 ml) was treated dropwise with the solution of 3,4-dichloroaniline (0.02 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 1 h and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,4-dichloroaniline. The resultant solid N-(3,4-dichlorophenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. Single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement

The O-bound and N-bound H atoms were located in a difference map. The positional parameters of the N-bound H atom were refined with N-H = 0.86 (4) Å and those of the O-bound (hydroxyl) H atom were refined with O-H distance restrained to 0.82 (4) Å. The positions of water H atoms were refined with restrained geometry (Nardelli, 1999) viz. O-H = 0.85 (4) Å and H···H = 1.365 (4) Å. The other H atoms were positioned with idealized geometry using a riding model [C-H = 0.93–0.97 Å]. The isotropic displacement parameters of all H atoms were set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom labelling and the displacement ellipsoids are at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, with hydrogen bonds shown as dashed lines.

Crystal data

C10H9Cl2NO3·H2O F(000) = 576
Mr = 280.10 Dx = 1.558 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 9.5634 (9) Å θ = 4.8–20.7°
b = 7.4527 (7) Å µ = 4.95 mm1
c = 17.292 (2) Å T = 299 K
β = 104.35 (2)° Prism, colourless
V = 1194.0 (2) Å3 0.55 × 0.50 × 0.40 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 2052 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.072
graphite θmax = 67.0°, θmin = 4.8°
ω/2θ scans h = −11→1
Absorption correction: ψ scan (North et al., 1968) k = −8→0
Tmin = 0.098, Tmax = 0.138 l = −19→20
2508 measured reflections 3 standard reflections every 120 min
2129 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.212 w = 1/[σ2(Fo2) + (0.1684P)2 + 0.6399P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.003
2129 reflections Δρmax = 0.92 e Å3
167 parameters Δρmin = −0.69 e Å3
5 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.014 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.35278 (8) 0.10598 (12) 0.56662 (5) 0.0441 (4)
Cl2 −0.33021 (8) 0.03602 (12) 0.38996 (4) 0.0449 (4)
O1 0.1190 (2) 0.2952 (3) 0.33626 (13) 0.0417 (6)
O2 0.5845 (3) 0.4233 (4) 0.26373 (15) 0.0534 (7)
H2O 0.674 (4) 0.448 (6) 0.262 (3) 0.064*
O3 0.6264 (3) 0.5188 (4) 0.38871 (15) 0.0543 (7)
N1 0.1755 (3) 0.3197 (3) 0.47092 (15) 0.0331 (6)
H1N 0.240 (4) 0.353 (5) 0.511 (2) 0.040*
C1 0.0452 (3) 0.2667 (4) 0.48923 (17) 0.0301 (7)
C2 0.0368 (3) 0.2923 (4) 0.56697 (18) 0.0345 (7)
H2 0.1138 0.3446 0.6036 0.041*
C3 −0.0840 (3) 0.2416 (4) 0.59077 (18) 0.0367 (7)
H3 −0.0879 0.2582 0.6435 0.044*
C4 −0.2005 (3) 0.1652 (4) 0.53626 (17) 0.0319 (7)
C5 −0.1905 (3) 0.1364 (4) 0.45895 (17) 0.0315 (7)
C6 −0.0693 (3) 0.1877 (4) 0.43433 (17) 0.0325 (7)
H6 −0.0646 0.1696 0.3818 0.039*
C7 0.2060 (3) 0.3302 (4) 0.39971 (17) 0.0311 (7)
C8 0.3601 (3) 0.3889 (4) 0.40446 (18) 0.0360 (7)
H8A 0.3773 0.5034 0.4319 0.043*
H8B 0.4260 0.3022 0.4359 0.043*
C9 0.3923 (4) 0.4068 (7) 0.3247 (2) 0.0566 (11)
H9A 0.3294 0.4973 0.2939 0.068*
H9B 0.3717 0.2938 0.2963 0.068*
C10 0.5465 (3) 0.4577 (5) 0.33053 (19) 0.0400 (8)
O4 0.1421 (3) 0.9875 (5) 0.23932 (16) 0.0570 (8)
H41 0.070 (4) 0.945 (6) 0.209 (3) 0.068*
H42 0.116 (5) 1.059 (6) 0.271 (3) 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0340 (5) 0.0587 (6) 0.0425 (6) −0.0077 (3) 0.0149 (4) 0.0020 (3)
Cl2 0.0329 (5) 0.0645 (7) 0.0332 (6) −0.0134 (3) 0.0003 (4) −0.0034 (3)
O1 0.0306 (11) 0.0668 (15) 0.0259 (11) −0.0049 (10) 0.0035 (9) −0.0020 (9)
O2 0.0391 (13) 0.0936 (19) 0.0297 (13) −0.0109 (13) 0.0123 (10) 0.0014 (12)
O3 0.0375 (13) 0.0839 (19) 0.0395 (14) −0.0159 (13) 0.0058 (11) −0.0119 (13)
N1 0.0270 (12) 0.0455 (14) 0.0256 (13) −0.0077 (10) 0.0045 (10) −0.0018 (10)
C1 0.0263 (13) 0.0343 (14) 0.0291 (15) 0.0006 (10) 0.0057 (11) 0.0034 (11)
C2 0.0326 (15) 0.0411 (15) 0.0279 (15) −0.0056 (12) 0.0039 (12) −0.0048 (11)
C3 0.0392 (16) 0.0438 (16) 0.0281 (15) −0.0024 (12) 0.0103 (12) −0.0045 (12)
C4 0.0273 (14) 0.0380 (14) 0.0310 (14) −0.0010 (11) 0.0085 (11) 0.0037 (11)
C5 0.0265 (14) 0.0372 (14) 0.0272 (14) −0.0027 (11) −0.0001 (11) 0.0022 (11)
C6 0.0313 (14) 0.0417 (16) 0.0237 (14) −0.0022 (11) 0.0055 (11) 0.0017 (11)
C7 0.0255 (14) 0.0359 (14) 0.0301 (14) 0.0002 (11) 0.0039 (11) 0.0017 (11)
C8 0.0299 (15) 0.0489 (17) 0.0288 (16) −0.0071 (12) 0.0063 (12) 0.0003 (12)
C9 0.0322 (18) 0.110 (3) 0.0274 (17) −0.0167 (18) 0.0062 (13) −0.0016 (17)
C10 0.0315 (16) 0.060 (2) 0.0281 (15) −0.0061 (13) 0.0071 (12) 0.0040 (13)
O4 0.0364 (13) 0.094 (2) 0.0387 (14) −0.0004 (13) 0.0064 (11) −0.0163 (14)

Geometric parameters (Å, °)

Cl1—C4 1.723 (3) C3—H3 0.93
Cl2—C5 1.726 (3) C4—C5 1.381 (4)
O1—C7 1.229 (4) C5—C6 1.384 (4)
O2—C10 1.319 (4) C6—H6 0.93
O2—H2O 0.88 (3) C7—C8 1.520 (4)
O3—C10 1.193 (4) C8—C9 1.492 (5)
N1—C7 1.337 (4) C8—H8A 0.97
N1—C1 1.415 (4) C8—H8B 0.97
N1—H1N 0.84 (3) C9—C10 1.501 (4)
C1—C2 1.380 (4) C9—H9A 0.97
C1—C6 1.390 (4) C9—H9B 0.97
C2—C3 1.372 (4) O4—H41 0.82 (3)
C2—H2 0.93 O4—H42 0.84 (3)
C3—C4 1.390 (4)
C10—O2—H2O 118 (3) C1—C6—H6 120.5
C7—N1—C1 128.9 (2) O1—C7—N1 123.8 (3)
C7—N1—H1N 117 (3) O1—C7—C8 122.8 (3)
C1—N1—H1N 114 (3) N1—C7—C8 113.4 (3)
C2—C1—C6 119.8 (3) C9—C8—C7 113.3 (3)
C2—C1—N1 116.5 (3) C9—C8—H8A 108.9
C6—C1—N1 123.6 (3) C7—C8—H8A 108.9
C3—C2—C1 120.7 (3) C9—C8—H8B 108.9
C3—C2—H2 119.6 C7—C8—H8B 108.9
C1—C2—H2 119.6 H8A—C8—H8B 107.7
C2—C3—C4 120.2 (3) C8—C9—C10 112.6 (3)
C2—C3—H3 119.9 C8—C9—H9A 109.1
C4—C3—H3 119.9 C10—C9—H9A 109.1
C5—C4—C3 118.9 (3) C8—C9—H9B 109.1
C5—C4—Cl1 121.4 (2) C10—C9—H9B 109.1
C3—C4—Cl1 119.6 (2) H9A—C9—H9B 107.8
C4—C5—C6 121.3 (3) O3—C10—O2 123.7 (3)
C4—C5—Cl2 120.6 (2) O3—C10—C9 124.5 (3)
C6—C5—Cl2 118.1 (2) O2—C10—C9 111.8 (3)
C5—C6—C1 119.0 (3) H41—O4—H42 109 (4)
C5—C6—H6 120.5
C7—N1—C1—C2 −171.2 (3) C4—C5—C6—C1 1.2 (4)
C7—N1—C1—C6 10.6 (5) Cl2—C5—C6—C1 −179.2 (2)
C6—C1—C2—C3 −0.3 (5) C2—C1—C6—C5 0.1 (4)
N1—C1—C2—C3 −178.6 (3) N1—C1—C6—C5 178.3 (3)
C1—C2—C3—C4 −0.8 (5) C1—N1—C7—O1 1.1 (5)
C2—C3—C4—C5 2.1 (5) C1—N1—C7—C8 −178.6 (3)
C2—C3—C4—Cl1 −178.8 (3) O1—C7—C8—C9 2.4 (5)
C3—C4—C5—C6 −2.3 (4) N1—C7—C8—C9 −177.9 (3)
Cl1—C4—C5—C6 178.6 (2) C7—C8—C9—C10 −177.7 (3)
C3—C4—C5—Cl2 178.1 (2) C8—C9—C10—O3 −16.9 (6)
Cl1—C4—C5—Cl2 −1.0 (4) C8—C9—C10—O2 161.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O4i 0.88 (3) 1.79 (3) 2.672 (4) 177 (5)
N1—H1N···O3ii 0.84 (3) 2.11 (3) 2.941 (4) 168 (4)
O4—H41···O1iii 0.82 (3) 2.11 (4) 2.894 (4) 162 (5)
O4—H42···O1iv 0.84 (3) 2.09 (3) 2.881 (4) 156 (5)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, y+1/2, −z+1/2; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2838).

References

  1. Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  2. Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o399. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873. [DOI] [PMC free article] [PubMed]
  5. Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr.24, 75–78.
  6. Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.
  7. Nardelli, M. (1999). J. Appl. Cryst.32, 563–571.
  8. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024519/ci2838sup1.cif

e-65-o1722-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024519/ci2838Isup2.hkl

e-65-o1722-Isup2.hkl (104.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES