Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 22;65(Pt 8):m962–m963. doi: 10.1107/S1600536809027688

Tetra­aqua­bis(3,5-di-4-pyridyl-1,2,4-triazolato-κN)nickel(II) dihydrate

Lin Yi Dong a,*
PMCID: PMC2977209  PMID: 21583408

Abstract

The NiII atom in the title compound, [Ni(C12H8N5)2(H2O)4]·2H2O, lies on a center of inversion and is coordinated by the N atoms of two 3,5-di-4-pyridine-1,2,4-triazolate ligands and by four water O atoms in a slightly distorted octa­hedral geometry. The coordinated and uncoordinated water mol­ecules inter­act with the N-heterocycles through O—H⋯N and O—H⋯O hydrogen bonds, generating a three-dimensional supra­molecular architecture.

Related literature

For magnetic studies of transition metal complexes with 1,2,4- triazole derivatives, see: Haasnoot (2000). For 3,5-di-4-pyridine-1,2,4-triazole, see: Zhang et al. (2005, 2006). For the synthesis, see: Basu & Dutta (1964). graphic file with name e-65-0m962-scheme1.jpg

Experimental

Crystal data

  • [Ni(C12H8N5)2(H2O)4]·2H2O

  • M r = 611.27

  • Monoclinic, Inline graphic

  • a = 7.3390 (15) Å

  • b = 15.653 (3) Å

  • c = 11.829 (2) Å

  • β = 107.20 (3)°

  • V = 1298.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.43 × 0.27 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.722, T max = 0.848

  • 10883 measured reflections

  • 2344 independent reflections

  • 2131 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.078

  • S = 1.14

  • 2344 reflections

  • 211 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027688/hg2531sup1.cif

e-65-0m962-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027688/hg2531Isup2.hkl

e-65-0m962-Isup2.hkl (115.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 (3) 2.03 (3) 2.818 (3) 160 (3)
O3—H3A⋯N4ii 0.85 (3) 2.09 (3) 2.939 (3) 172 (3)
O3—H3B⋯N5iii 0.86 (4) 1.94 (4) 2.789 (3) 173 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Transition metal complexes with 1,2,4-triazole derivatives as ligands are of great interest as they are the subject of magnetic studies (Haasnoot, 2000). The ligand 3,5-di(4-pyridine)-1,2,4-triazole is of special interest as it contains multi-dentate donor atoms and shows diverse coordination modes. Especially only a few examples about the coordinaiton chemistry of L are reported. Some unusual coordination modes of L also have been reported forming interesting supramolecular isomerism systems (Zhang et al., 2006).

In this work, we synthesized a new compound [Ni(L)2(H2O)4](H2O)2 (L = 3,5-di(4-pyridine)-1,2,4-triazolate anions), which is composed of one nickel(II) cation, two L ligand, four coordinated and two lattice water molecules. The nickel(II) cation is six-coordinated in the octahedral geometry. The equatorial site of nickel cation is occupied by four aqua molecules while the axial site is occupied by two nitrogen atoms of two mono-dentate L ligands. The mono-dentate coordination mode of L is different from previously reported di-, tri- or tetra-dentate coordination modes of L (Zhang et al., 2005; Zhang et al., 2006).

O3 acts as both a hydrogen bond donor and a hydrogen bond acceptor. Strong O—H···N and O—H···O hydrogen bonds generated from water molecules and nitrogen atoms of pyridine or triazole groups are also observed resulting in the three-dimensional supramolecular network.

Experimental

The ligand was prepared according to the previous literature (Basu & Dutta, (1964)). [Ni(L)2(H2O)4](H2O) (I) (L = 3,5- di(4-pyridine)-1,2,4-triazole) was prepared under the hydrothermal conditions. [Ni(ClO4)2].6H2O (0.2 mmol), L (0.2 mmol) and 18 ml water was added to a 25 ml reaction vessel. The reaction vessel was then sealed and subsequently placed in an oven for 140 h at 160°C well shaped green block crystals were obtained and washed with ethanol.

Refinement

All H atoms were found on difference maps. The water H atoms were refined freely, giving an O–H = 0.82–0.86 Å. The remaining H atoms were placed in calculated positions, with C–H = 0.93 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C)

Figures

Fig. 1.

Fig. 1.

View of the title compound, with displacement ellipsoids drawn at the 40% probability level.

Crystal data

[Ni(C12H8N5)2(H2O)4]·2H2O F(000) = 636
Mr = 611.27 Dx = 1.564 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 467 reflections
a = 7.3390 (15) Å θ = 1.5–25.3°
b = 15.653 (3) Å µ = 0.81 mm1
c = 11.829 (2) Å T = 293 K
β = 107.20 (3)° Block, green
V = 1298.1 (5) Å3 0.43 × 0.27 × 0.21 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 2344 independent reflections
Radiation source: fine-focus sealed tube 2131 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 25.2°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.722, Tmax = 0.848 k = −18→18
10883 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0259P)2 + 1.0454P] where P = (Fo2 + 2Fc2)/3
2344 reflections (Δ/σ)max < 0.001
211 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4927 (3) 0.33129 (14) 0.6238 (2) 0.0265 (5)
H1C 0.5402 0.3645 0.6914 0.032*
C2 0.4672 (3) 0.24522 (14) 0.6376 (2) 0.0272 (5)
H2C 0.4983 0.2216 0.7131 0.033*
C3 0.3951 (3) 0.19348 (13) 0.53900 (19) 0.0218 (5)
C4 0.3570 (4) 0.23293 (14) 0.4292 (2) 0.0287 (5)
H4A 0.3117 0.2010 0.3603 0.034*
C5 0.3864 (4) 0.31953 (14) 0.4228 (2) 0.0283 (5)
H5A 0.3590 0.3446 0.3483 0.034*
C6 0.3545 (3) 0.10302 (13) 0.55253 (19) 0.0217 (5)
C7 0.2505 (3) −0.02231 (13) 0.52360 (19) 0.0224 (5)
C8 0.1688 (3) −0.10334 (14) 0.46845 (19) 0.0232 (5)
C9 0.1536 (4) −0.17397 (16) 0.5368 (2) 0.0370 (6)
H9A 0.1892 −0.1697 0.6189 0.044*
C10 0.0858 (4) −0.24977 (16) 0.4823 (2) 0.0411 (7)
H10A 0.0794 −0.2962 0.5301 0.049*
C11 0.0428 (4) −0.19348 (16) 0.3005 (2) 0.0359 (6)
H11A 0.0042 −0.1995 0.2186 0.043*
C12 0.1111 (4) −0.11487 (15) 0.3471 (2) 0.0312 (6)
H12A 0.1184 −0.0699 0.2971 0.037*
H1A 0.413 (5) 0.550 (2) 0.686 (3) 0.051 (9)*
H2A 0.149 (5) 0.527 (2) 0.358 (3) 0.051 (10)*
H3A 0.163 (5) 0.426 (2) 0.782 (3) 0.054 (10)*
H1B 0.283 (5) 0.493 (2) 0.633 (3) 0.055 (10)*
H2B 0.257 (4) 0.5122 (18) 0.292 (3) 0.048 (9)*
H3B 0.077 (5) 0.372 (2) 0.691 (3) 0.062 (10)*
N1 0.4525 (3) 0.36961 (11) 0.51811 (16) 0.0237 (4)
N2 0.3943 (3) 0.06670 (12) 0.65942 (16) 0.0279 (5)
N3 0.3259 (3) −0.01470 (12) 0.64046 (17) 0.0290 (5)
N4 0.2645 (3) 0.04985 (11) 0.46332 (16) 0.0226 (4)
N5 0.0286 (3) −0.26126 (13) 0.3656 (2) 0.0360 (5)
Ni1 0.5000 0.5000 0.5000 0.01983 (13)
O1 0.3476 (3) 0.53202 (12) 0.61834 (15) 0.0275 (4)
O2 0.2507 (3) 0.50476 (11) 0.35989 (15) 0.0287 (4)
O3 0.1179 (3) 0.42339 (11) 0.70636 (17) 0.0314 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0368 (14) 0.0208 (12) 0.0204 (12) −0.0048 (10) 0.0062 (10) −0.0025 (9)
C2 0.0390 (14) 0.0215 (12) 0.0197 (12) −0.0036 (10) 0.0066 (10) 0.0023 (9)
C3 0.0249 (12) 0.0178 (11) 0.0234 (12) −0.0009 (9) 0.0083 (9) −0.0001 (9)
C4 0.0434 (15) 0.0199 (12) 0.0204 (12) −0.0063 (11) 0.0057 (10) −0.0029 (9)
C5 0.0416 (15) 0.0216 (12) 0.0199 (12) −0.0021 (10) 0.0062 (10) 0.0026 (9)
C6 0.0269 (12) 0.0174 (11) 0.0209 (11) −0.0006 (9) 0.0073 (9) 0.0001 (9)
C7 0.0281 (12) 0.0162 (11) 0.0224 (11) −0.0009 (9) 0.0068 (9) −0.0005 (8)
C8 0.0239 (12) 0.0188 (11) 0.0254 (12) −0.0003 (9) 0.0051 (9) −0.0010 (9)
C9 0.0588 (18) 0.0260 (13) 0.0251 (13) −0.0116 (12) 0.0108 (12) 0.0001 (10)
C10 0.0624 (19) 0.0225 (13) 0.0392 (16) −0.0129 (13) 0.0161 (13) 0.0020 (11)
C11 0.0424 (15) 0.0314 (14) 0.0280 (13) −0.0042 (11) 0.0014 (11) −0.0060 (11)
C12 0.0400 (15) 0.0221 (12) 0.0269 (13) −0.0029 (10) 0.0031 (11) 0.0039 (10)
N1 0.0310 (11) 0.0168 (9) 0.0223 (10) −0.0024 (8) 0.0067 (8) −0.0006 (7)
N2 0.0413 (12) 0.0175 (10) 0.0232 (10) −0.0064 (9) 0.0070 (9) 0.0002 (8)
N3 0.0429 (12) 0.0189 (10) 0.0232 (10) −0.0071 (9) 0.0067 (9) 0.0009 (8)
N4 0.0281 (10) 0.0161 (9) 0.0222 (10) −0.0016 (8) 0.0053 (8) 0.0011 (7)
N5 0.0408 (13) 0.0244 (11) 0.0416 (13) −0.0077 (10) 0.0102 (10) −0.0075 (9)
Ni1 0.0263 (2) 0.0140 (2) 0.0186 (2) −0.00180 (17) 0.00564 (16) −0.00025 (16)
O1 0.0322 (10) 0.0267 (9) 0.0246 (9) −0.0036 (8) 0.0101 (8) −0.0021 (7)
O2 0.0288 (10) 0.0329 (10) 0.0228 (9) 0.0044 (8) 0.0054 (7) −0.0001 (7)
O3 0.0420 (11) 0.0222 (9) 0.0288 (10) −0.0034 (8) 0.0088 (8) −0.0015 (7)

Geometric parameters (Å, °)

C1—N1 1.339 (3) C10—N5 1.331 (3)
C1—C2 1.377 (3) C10—H10A 0.9300
C1—H1C 0.9300 C11—N5 1.333 (3)
C2—C3 1.390 (3) C11—C12 1.380 (3)
C2—H2C 0.9300 C11—H11A 0.9300
C3—C4 1.389 (3) C12—H12A 0.9300
C3—C6 1.465 (3) N1—Ni1 2.0921 (18)
C4—C5 1.378 (3) N2—N3 1.364 (3)
C4—H4A 0.9300 Ni1—O2 2.0753 (19)
C5—N1 1.341 (3) Ni1—O2i 2.0753 (19)
C5—H5A 0.9300 Ni1—N1i 2.0921 (18)
C6—N2 1.337 (3) Ni1—O1 2.0945 (17)
C6—N4 1.353 (3) Ni1—O1i 2.0945 (17)
C7—N3 1.334 (3) O1—H1A 0.85 (3)
C7—N4 1.356 (3) O1—H1B 0.82 (3)
C7—C8 1.471 (3) O2—H2A 0.82 (3)
C8—C12 1.384 (3) O2—H2B 0.82 (3)
C8—C9 1.393 (3) O3—H3A 0.85 (3)
C9—C10 1.372 (3) O3—H3B 0.86 (4)
C9—H9A 0.9300
N1—C1—C2 123.3 (2) C11—C12—C8 119.6 (2)
N1—C1—H1C 118.3 C11—C12—H12A 120.2
C2—C1—H1C 118.3 C8—C12—H12A 120.2
C1—C2—C3 120.1 (2) C1—N1—C5 116.65 (19)
C1—C2—H2C 119.9 C1—N1—Ni1 122.37 (14)
C3—C2—H2C 119.9 C5—N1—Ni1 120.94 (15)
C4—C3—C2 116.5 (2) C6—N2—N3 105.95 (17)
C4—C3—C6 122.7 (2) C7—N3—N2 105.88 (17)
C2—C3—C6 120.7 (2) C6—N4—C7 101.41 (18)
C5—C4—C3 119.8 (2) C10—N5—C11 115.9 (2)
C5—C4—H4A 120.1 O2—Ni1—O2i 180.0
C3—C4—H4A 120.1 O2—Ni1—N1i 90.99 (7)
N1—C5—C4 123.5 (2) O2i—Ni1—N1i 89.01 (7)
N1—C5—H5A 118.2 O2—Ni1—N1 89.01 (7)
C4—C5—H5A 118.2 O2i—Ni1—N1 90.99 (7)
N2—C6—N4 113.30 (19) N1i—Ni1—N1 180.0
N2—C6—C3 121.29 (19) O2—Ni1—O1 90.36 (8)
N4—C6—C3 125.27 (19) O2i—Ni1—O1 89.64 (8)
N3—C7—N4 113.45 (19) N1i—Ni1—O1 88.45 (7)
N3—C7—C8 121.77 (19) N1—Ni1—O1 91.55 (7)
N4—C7—C8 124.7 (2) O2—Ni1—O1i 89.64 (8)
C12—C8—C9 116.5 (2) O2i—Ni1—O1i 90.36 (8)
C12—C8—C7 122.2 (2) N1i—Ni1—O1i 91.55 (7)
C9—C8—C7 121.3 (2) N1—Ni1—O1i 88.45 (7)
C10—C9—C8 119.6 (2) O1—Ni1—O1i 180.0
C10—C9—H9A 120.2 Ni1—O1—H1A 117 (2)
C8—C9—H9A 120.2 Ni1—O1—H1B 115 (2)
N5—C10—C9 124.3 (2) H1A—O1—H1B 104 (3)
N5—C10—H10A 117.8 Ni1—O2—H2A 128 (2)
C9—C10—H10A 117.8 Ni1—O2—H2B 119 (2)
N5—C11—C12 124.1 (2) H2A—O2—H2B 103 (3)
N5—C11—H11A 118.0 H3A—O3—H3B 106 (3)
C12—C11—H11A 118.0
N1—C1—C2—C3 −0.5 (4) C4—C5—N1—Ni1 178.32 (19)
C1—C2—C3—C4 1.7 (3) N4—C6—N2—N3 −0.5 (3)
C1—C2—C3—C6 −175.6 (2) C3—C6—N2—N3 175.4 (2)
C2—C3—C4—C5 −1.7 (4) N4—C7—N3—N2 −0.2 (3)
C6—C3—C4—C5 175.6 (2) C8—C7—N3—N2 177.4 (2)
C3—C4—C5—N1 0.5 (4) C6—N2—N3—C7 0.4 (2)
C4—C3—C6—N2 179.4 (2) N2—C6—N4—C7 0.4 (3)
C2—C3—C6—N2 −3.4 (3) C3—C6—N4—C7 −175.3 (2)
C4—C3—C6—N4 −5.2 (4) N3—C7—N4—C6 −0.2 (3)
C2—C3—C6—N4 172.1 (2) C8—C7—N4—C6 −177.6 (2)
N3—C7—C8—C12 −172.1 (2) C9—C10—N5—C11 1.0 (4)
N4—C7—C8—C12 5.1 (4) C12—C11—N5—C10 −0.2 (4)
N3—C7—C8—C9 4.9 (4) C1—N1—Ni1—O2 −142.48 (19)
N4—C7—C8—C9 −177.8 (2) C5—N1—Ni1—O2 40.10 (19)
C12—C8—C9—C10 0.6 (4) C1—N1—Ni1—O2i 37.52 (19)
C7—C8—C9—C10 −176.6 (2) C5—N1—Ni1—O2i −139.90 (19)
C8—C9—C10—N5 −1.2 (5) C1—N1—Ni1—N1i 139 (100)
N5—C11—C12—C8 −0.4 (4) C5—N1—Ni1—N1i −39 (100)
C9—C8—C12—C11 0.2 (4) C1—N1—Ni1—O1 −52.15 (19)
C7—C8—C12—C11 177.3 (2) C5—N1—Ni1—O1 130.43 (19)
C2—C1—N1—C5 −0.7 (4) C1—N1—Ni1—O1i 127.85 (19)
C2—C1—N1—Ni1 −178.26 (18) C5—N1—Ni1—O1i −49.57 (19)
C4—C5—N1—C1 0.8 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O3ii 0.82 (3) 2.03 (3) 2.818 (3) 160 (3)
O3—H3A···N4iii 0.85 (3) 2.09 (3) 2.939 (3) 172 (3)
O3—H3B···N5iv 0.86 (4) 1.94 (4) 2.789 (3) 173 (3)

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2531).

References

  1. Basu, U. P. & Dutta, S. (1964). J. Org. Chem 30, 3562–3564. [DOI] [PubMed]
  2. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Haasnoot, J. G. (2000). Coord. Chem. Rev 200–202, 131–185.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zhang, J. P., Lin, Y. Y., Huang, X. C. & Chen, X. M. (2005). J. Am. Chem. Soc 127, 5495–5506. [DOI] [PubMed]
  8. Zhang, J. P., Lin, Y. Y., Huang, X. C. & Chen, X. M. (2006). Cryst. Growth Des 6, 519–523.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027688/hg2531sup1.cif

e-65-0m962-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027688/hg2531Isup2.hkl

e-65-0m962-Isup2.hkl (115.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES