Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 31;65(Pt 8):o2055. doi: 10.1107/S1600536809029924

3-[(E)-(4-Ethyl­phen­yl)imino­meth­yl]benzene-1,2-diol

Zeynep Keleşoğlu a,*, Orhan Büyükgüngör a, Çiğdem Albayrak b, Mustafa Odabaşoğlu c
PMCID: PMC2977215  PMID: 21583717

Abstract

The title compound, C15H15NO2, adopts the enol–imine tautomeric form. The dihedral angle between the two benzene rings is 48.1 (1)°. Intra­molecular O—H⋯N and O—H⋯O hydrogen bonds generate S(6) and S(5) ring motifs, respectively. In the crystal, mol­ecules are linked into centrosymmetric R 2 2(10) dimers via pairs of O—H⋯O hydrogen bonds and the dimers may interact through very weak by π–π inter­actions [centroid–centroid distance = 4.150 (1) Å]. The ethyl group is disordered over two orientations, with occupancies of 0.587 (11) and 0.413 (11).

Related literature

For the photochromic and thermochromic properties of Schiff base compounds, see: Elmali et al. (1999); Guha et al. (2000); Kletski et al. (1997); Kownacki et al. (1994); Zgierski et al. (2000). For Schiff base tautomerism, see: Alarcon et al. (1995); Dudek et al., (1966); Salman et al. (1991, 1993). For a related structure, see: Özek et al. (2009). For graph-set motifs, see: Bernstein et al. (1995).graphic file with name e-65-o2055-scheme1.jpg

Experimental

Crystal data

  • C15H15NO2

  • M r = 241.28

  • Triclinic, Inline graphic

  • a = 6.1893 (4) Å

  • b = 8.7704 (6) Å

  • c = 12.7605 (9) Å

  • α = 87.326 (6)°

  • β = 86.397 (6)°

  • γ = 69.394 (5)°

  • V = 646.85 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.54 × 0.41 × 0.31 mm

Data collection

  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.966, T max = 0.979

  • 8683 measured reflections

  • 2668 independent reflections

  • 1896 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.148

  • S = 1.03

  • 2668 reflections

  • 191 parameters

  • 28 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029924/ci2862sup1.cif

e-65-o2055-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029924/ci2862Isup2.hkl

e-65-o2055-Isup2.hkl (128.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.95 (3) 1.72 (3) 2.596 (2) 152 (2)
O2—H2⋯O1 0.88 (3) 2.29 (3) 2.7307 (19) 111 (2)
O2—H2⋯O1i 0.88 (3) 2.06 (3) 2.818 (2) 143 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

There has been considerable interest in some Schiff bases derived from salicylaldehyde and substituted salicylaldehyde because they show thermochromism and photochromism in the solid state (Kownacki et al., 1994). The tautomerism in the Schiff base ligands plays an important role for distinguishing their photochromic (Guha et al., 2000) and thermochromic (Zgierski et al., 2000) characteristics. It has been proposed that molecules showing thermochromism are planar, while those showing photochromism are non-planar (Kletski et al., 1997), both phenomena being associated with a proton transfer (Elmali et al., 1999). Schiff bases derived from the condensation of salicylaldehyde with aniline and substituted aniline, and naphthaldehyde with aniline exists as enol-imine (Dudek et al., 1966), keto-amine (Salman et al., 1991), or enol-imine/keto-amine form (Salman et al., 1993; Alarcon et al., 1995) in all solvents.

The X-ray analysis shows that the title compound prefers an enol-imine tautomeric form, with a strong intramolecular O1—H1···N1 hydrogen bond. This is also confirmed by the C2—O1 [1.361 (2) Å], C7—N1 [1.278 (2) Å], C1—C7 [1.445 (2) Å] and C1—C2 [1.399 (2) Å] bond lengths (Fig. 1). The C2—O1 bond length of 1.361 (2) Å indicates a single-bond character and the C7—N1 bond length of 1.278 (2) Å indicates a high degree of double-bond character. Similar results were observed for (E)-4-methoxy-2-[(o-tolilimino)methyl]phenol [C—O = 1.357 (2) Å, C═N= 1.286 (2) Å; Özek et al., 2009]. An intramolecular O2—H2···O1 hydrogen bond is also observed. The O—H···N and O—H···O hydrogen bonds generate S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995).

The dihedral angle between benzene rings A(C1-C6) and B(C8-C13) is 48.1 (1)°. The nearly planar S(6) ring C(O1/H1/N1/C1/C2/C7) is oriented with respect to rings A and B at dihedral angles of A/C = 1.89 (42)° and B/C = 46.23 (25)°. It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Since the title moleclule is non-planar, one can expect photochromic properties in title compound.

In the crystal structure, molecules are linked into centrosymmetric R22(10) dimers via O—H···O hydrogen bonds (Table 2). A very weak π–π interaction occurs between A(C1-C6) rings at (x, y, z) and (1-x, 1-y, 1-z), with a ring centroid-to centroid distance of 4.150 (1) Å; only atoms C1, C2 and C3 are involved in the interactions as the rings are displaced.

Experimental

Compound (I) was prepared by refluxing a mixture of 2,3-dihidroxy benzalaldehyde (0.5 g 0.0036 mol) in ethanol (20 ml) and 4-ethylaniline (0.436 g 0.0036 mol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a methanol solution (yield 87%, m.p. 378-379 K).

Refinement

The ethyl group is disordered over two orientations, with occupancies of 0.587 (11) and 0.413 (11). The Uij parameters of the disordered atoms were restrained to an approximate isotropic behaviour. The C—C distances involving disordered atoms were restrained to 1.54 (2) Å. The hydroxyl H atoms were located in a difference Fourier map and were refined freely. All other H-atoms were refined using a riding model with d(C-H) = 0.93–0.96 Å (Uiso = 1.2Ueq of the parent atom) for aromatic and ethyl C atoms and d(C-H) = 0.97 Å (Uiso=1.5Ueq of the parent atom) for methyl C atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Only the major disorder component of the ethyl group is shown. Dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

A packing diagram for (I), showing the formation dimers through O—H···O hydrogen bonds and π–π interactions. [Symmetry code: (i) -x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z]. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. Cg1 and Cg2 are centroids of the C1-C6 and C8-C13 rings, respectively.

Crystal data

C15H15NO2 Z = 2
Mr = 241.28 F(000) = 256
Triclinic, P1 Dx = 1.239 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.1893 (4) Å Cell parameters from 8683 reflections
b = 8.7704 (6) Å θ = 1.6–28.0°
c = 12.7605 (9) Å µ = 0.08 mm1
α = 87.326 (6)° T = 296 K
β = 86.397 (6)° Prism, red
γ = 69.394 (5)° 0.54 × 0.41 × 0.31 mm
V = 646.85 (8) Å3

Data collection

Stoe IPDS II diffractometer 2668 independent reflections
Radiation source: fine-focus sealed tube 1896 reflections with I > 2σ(I)
graphite Rint = 0.042
Detector resolution: 6.67 pixels mm-1 θmax = 26.5°, θmin = 1.6°
rotation method scans h = −7→7
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −11→11
Tmin = 0.966, Tmax = 0.979 l = −15→15
8683 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.1042P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
2668 reflections Δρmax = 0.24 e Å3
191 parameters Δρmin = −0.13 e Å3
28 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.030 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.5280 (3) 0.5619 (2) 0.34375 (15) 0.0590 (5)
C2 0.3189 (3) 0.5824 (2) 0.40019 (14) 0.0557 (4)
C3 0.2107 (3) 0.7228 (2) 0.45769 (15) 0.0583 (5)
C4 0.3058 (3) 0.8430 (2) 0.45564 (17) 0.0664 (5)
H4 0.2322 0.9372 0.4932 0.080*
C5 0.5101 (4) 0.8250 (2) 0.39809 (18) 0.0717 (6)
H5 0.5719 0.9076 0.3964 0.086*
C6 0.6212 (4) 0.6859 (2) 0.34379 (17) 0.0700 (5)
H6 0.7600 0.6736 0.3065 0.084*
C7 0.6472 (3) 0.4135 (2) 0.28805 (15) 0.0636 (5)
H7 0.7913 0.3996 0.2554 0.076*
C8 0.6932 (3) 0.1541 (2) 0.23042 (15) 0.0629 (5)
C9 0.9261 (4) 0.0745 (3) 0.24457 (18) 0.0752 (6)
H9 1.0026 0.1169 0.2892 0.090*
C10 1.0450 (4) −0.0671 (3) 0.1929 (2) 0.0914 (8)
H10 1.2010 −0.1202 0.2041 0.110*
C11 0.9377 (5) −0.1323 (3) 0.1246 (2) 0.0994 (8)
C12 0.7038 (5) −0.0553 (3) 0.1148 (2) 0.0949 (8)
H12 0.6263 −0.0994 0.0718 0.114*
C13 0.5816 (4) 0.0857 (3) 0.16706 (18) 0.0789 (6)
H13 0.4233 0.1347 0.1595 0.095*
C14A 1.0861 (17) −0.2683 (8) 0.0432 (7) 0.120 (3) 0.587 (11)
H14A 0.9952 −0.2714 −0.0153 0.144* 0.587 (11)
H14B 1.2235 −0.2474 0.0164 0.144* 0.587 (11)
C15A 1.1473 (16) −0.4208 (9) 0.1053 (5) 0.143 (3) 0.587 (11)
H15A 1.2155 −0.5112 0.0597 0.214* 0.587 (11)
H15B 1.0107 −0.4296 0.1409 0.214* 0.587 (11)
H15C 1.2558 −0.4216 0.1561 0.214* 0.587 (11)
C14B 1.0391 (18) −0.3057 (11) 0.0870 (10) 0.116 (4) 0.413 (11)
H14C 1.0239 −0.3787 0.1441 0.139* 0.413 (11)
H14D 0.9493 −0.3172 0.0303 0.139* 0.413 (11)
C15B 1.273 (2) −0.3543 (17) 0.0517 (11) 0.164 (5) 0.413 (11)
H15D 1.2997 −0.4273 −0.0053 0.246* 0.413 (11)
H15E 1.3686 −0.4085 0.1082 0.246* 0.413 (11)
H15F 1.3090 −0.2601 0.0282 0.246* 0.413 (11)
N1 0.5630 (3) 0.30067 (18) 0.28177 (13) 0.0637 (4)
O1 0.2152 (2) 0.46864 (15) 0.40254 (11) 0.0659 (4)
O2 0.0118 (2) 0.74271 (17) 0.51685 (13) 0.0749 (5)
H1 0.314 (5) 0.386 (3) 0.358 (2) 0.099 (8)*
H2 −0.027 (5) 0.655 (4) 0.515 (2) 0.111 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0606 (11) 0.0534 (10) 0.0622 (11) −0.0192 (8) −0.0047 (9) 0.0012 (8)
C2 0.0577 (10) 0.0463 (9) 0.0641 (11) −0.0189 (8) −0.0078 (8) −0.0009 (7)
C3 0.0546 (10) 0.0491 (9) 0.0695 (12) −0.0150 (8) −0.0065 (8) −0.0049 (8)
C4 0.0681 (12) 0.0502 (10) 0.0818 (13) −0.0197 (9) −0.0128 (10) −0.0079 (9)
C5 0.0766 (13) 0.0580 (11) 0.0896 (15) −0.0339 (10) −0.0112 (11) 0.0003 (10)
C6 0.0674 (12) 0.0667 (12) 0.0807 (14) −0.0301 (10) −0.0005 (10) 0.0004 (10)
C7 0.0628 (11) 0.0606 (11) 0.0638 (12) −0.0185 (9) 0.0036 (9) −0.0008 (9)
C8 0.0712 (12) 0.0564 (10) 0.0585 (11) −0.0195 (9) 0.0014 (9) −0.0034 (8)
C9 0.0736 (13) 0.0669 (12) 0.0793 (14) −0.0156 (10) −0.0063 (10) −0.0143 (10)
C10 0.0826 (16) 0.0733 (14) 0.1042 (19) −0.0078 (12) −0.0029 (13) −0.0206 (13)
C11 0.112 (2) 0.0714 (14) 0.104 (2) −0.0159 (14) −0.0015 (15) −0.0307 (13)
C12 0.117 (2) 0.0750 (15) 0.0955 (18) −0.0321 (15) −0.0172 (15) −0.0207 (13)
C13 0.0826 (15) 0.0695 (13) 0.0861 (15) −0.0265 (11) −0.0127 (12) −0.0062 (11)
C14A 0.144 (6) 0.085 (4) 0.129 (5) −0.042 (4) 0.014 (4) 0.013 (3)
C15A 0.182 (7) 0.098 (5) 0.114 (4) −0.007 (4) 0.007 (4) −0.021 (3)
C14B 0.137 (6) 0.059 (5) 0.136 (7) −0.016 (4) 0.034 (5) −0.044 (5)
C15B 0.156 (8) 0.135 (7) 0.185 (9) −0.036 (6) 0.038 (7) −0.029 (6)
N1 0.0668 (10) 0.0559 (9) 0.0655 (10) −0.0181 (7) 0.0016 (7) −0.0054 (7)
O1 0.0642 (8) 0.0517 (7) 0.0840 (10) −0.0234 (6) 0.0090 (7) −0.0149 (6)
O2 0.0646 (9) 0.0587 (8) 0.1033 (12) −0.0236 (7) 0.0119 (7) −0.0265 (7)

Geometric parameters (Å, °)

C1—C2 1.399 (3) C11—C12 1.376 (4)
C1—C6 1.399 (3) C11—C14B 1.514 (7)
C1—C7 1.445 (3) C11—C14A 1.603 (8)
C2—O1 1.361 (2) C12—C13 1.379 (3)
C2—C3 1.395 (2) C12—H12 0.93
C3—O2 1.364 (2) C13—H13 0.93
C3—C4 1.375 (3) C14A—C15A 1.464 (11)
C4—C5 1.385 (3) C14A—H14A 0.97
C4—H4 0.93 C14A—H14B 0.97
C5—C6 1.367 (3) C15A—H15A 0.96
C5—H5 0.93 C15A—H15B 0.96
C6—H6 0.93 C15A—H15C 0.96
C7—N1 1.278 (2) C14B—C15B 1.405 (15)
C7—H7 0.93 C14B—H14C 0.97
C8—C13 1.378 (3) C14B—H14D 0.97
C8—C9 1.382 (3) C15B—H15D 0.96
C8—N1 1.419 (2) C15B—H15E 0.96
C9—C10 1.375 (3) C15B—H15F 0.96
C9—H9 0.93 O1—H1 0.95 (3)
C10—C11 1.383 (4) O2—H2 0.88 (3)
C10—H10 0.93
C2—C1—C6 118.93 (17) C10—C11—C14A 121.0 (4)
C2—C1—C7 120.31 (17) C11—C12—C13 121.7 (2)
C6—C1—C7 120.76 (18) C11—C12—H12 119.2
O1—C2—C3 117.70 (17) C13—C12—H12 119.2
O1—C2—C1 122.45 (16) C8—C13—C12 120.2 (2)
C3—C2—C1 119.85 (16) C8—C13—H13 119.9
O2—C3—C4 119.15 (17) C12—C13—H13 119.9
O2—C3—C2 121.02 (16) C15A—C14A—C11 104.1 (6)
C4—C3—C2 119.83 (18) C15A—C14A—H14A 110.9
C3—C4—C5 120.55 (18) C11—C14A—H14A 110.9
C3—C4—H4 119.7 C15A—C14A—H14B 110.9
C5—C4—H4 119.7 C11—C14A—H14B 110.9
C6—C5—C4 120.14 (19) H14A—C14A—H14B 109.0
C6—C5—H5 119.9 C14A—C15A—H15A 109.5
C4—C5—H5 119.9 C14A—C15A—H15B 109.5
C5—C6—C1 120.7 (2) H15A—C15A—H15B 109.5
C5—C6—H6 119.7 C14A—C15A—H15C 109.5
C1—C6—H6 119.7 H15A—C15A—H15C 109.5
N1—C7—C1 122.76 (18) H15B—C15A—H15C 109.5
N1—C7—H7 118.6 C15B—C14B—C11 114.5 (9)
C1—C7—H7 118.6 C15B—C14B—H14C 108.6
C13—C8—C9 118.79 (18) C11—C14B—H14C 108.6
C13—C8—N1 118.77 (19) C15B—C14B—H14D 108.6
C9—C8—N1 122.40 (18) C11—C14B—H14D 108.6
C10—C9—C8 120.3 (2) H14C—C14B—H14D 107.6
C10—C9—H9 119.9 C14B—C15B—H15D 109.5
C8—C9—H9 119.9 C14B—C15B—H15E 109.5
C9—C10—C11 121.5 (2) H15D—C15B—H15E 109.5
C9—C10—H10 119.3 C14B—C15B—H15F 109.5
C11—C10—H10 119.3 H15D—C15B—H15F 109.5
C12—C11—C10 117.4 (2) H15E—C15B—H15F 109.5
C12—C11—C14B 116.2 (5) C7—N1—C8 120.19 (17)
C10—C11—C14B 123.6 (5) C2—O1—H1 103.8 (15)
C12—C11—C14A 120.4 (4) C3—O2—H2 111.0 (18)
C6—C1—C2—O1 178.84 (17) C9—C10—C11—C12 −3.7 (4)
C7—C1—C2—O1 −2.3 (3) C9—C10—C11—C14B −164.1 (6)
C6—C1—C2—C3 −1.9 (3) C9—C10—C11—C14A 164.1 (4)
C7—C1—C2—C3 177.02 (17) C10—C11—C12—C13 2.8 (4)
O1—C2—C3—O2 2.1 (3) C14B—C11—C12—C13 164.7 (6)
C1—C2—C3—O2 −177.26 (17) C14A—C11—C12—C13 −165.0 (4)
O1—C2—C3—C4 −178.37 (17) C9—C8—C13—C12 −3.3 (3)
C1—C2—C3—C4 2.3 (3) N1—C8—C13—C12 179.0 (2)
O2—C3—C4—C5 178.65 (18) C11—C12—C13—C8 0.6 (4)
C2—C3—C4—C5 −0.9 (3) C12—C11—C14A—C15A −109.9 (7)
C3—C4—C5—C6 −0.9 (3) C10—C11—C14A—C15A 82.7 (8)
C4—C5—C6—C1 1.4 (3) C14B—C11—C14A—C15A −21.5 (12)
C2—C1—C6—C5 0.0 (3) C12—C11—C14B—C15B 151.7 (11)
C7—C1—C6—C5 −178.83 (18) C10—C11—C14B—C15B −47.7 (16)
C2—C1—C7—N1 4.6 (3) C14A—C11—C14B—C15B 45.5 (13)
C6—C1—C7—N1 −176.53 (19) C1—C7—N1—C8 −176.85 (17)
C13—C8—C9—C10 2.5 (3) C13—C8—N1—C7 −139.4 (2)
N1—C8—C9—C10 −179.9 (2) C9—C8—N1—C7 43.0 (3)
C8—C9—C10—C11 1.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.95 (3) 1.72 (3) 2.596 (2) 152 (2)
O2—H2···O1 0.88 (3) 2.29 (3) 2.7307 (19) 111 (2)
O2—H2···O1i 0.88 (3) 2.06 (3) 2.818 (2) 143 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2862).

References

  1. Alarcon, S. H., Olivieri, A. C. & Nordon, A. (1995). Tetrahedron, 51, 4619–4626.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Dudek, G. O. & Dudek, E. P. (1966). J. Am. Chem. Soc.88, 2407–2412.
  4. Elmali, A., Kabak, M., Kavlakoglu, E., Elerman, Y. & Durlu, T. N. (1999). J. Mol. Struct.510, 207–214.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Guha, D., Mandal, A., Koll, A., Filarowski, A. & Mukherjee, S. (2000). Spectrochim. Acta A, 56, 2669–2677. [DOI] [PubMed]
  8. Kletski, M., Milov, A., Metelisa, A. & Knyazhansky, M. (1997). J. Photochem. Photobiol. A, 110, 267–270.
  9. Kownacki, K., Mordzinski, A., Wilbrandt, R. & Grobowska, A. (1994). Chem. Phys. Lett.227, 270–276.
  10. Özek, A., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2009). Acta Cryst. E65, o791. [DOI] [PMC free article] [PubMed]
  11. Salman, S. R., Lindon, J. C. & Farrant, R. D. (1991). Spectrosc. Lett.24, 1071–1078.
  12. Salman, S. R., Lindon, J. C. & Farrant, R. D. (1993). Magn. Reson. Chem.31, 991–994.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  15. Zgierski, M. & Grobowska, A. (2000). J. Chem. Phys.113, 7845–7852.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029924/ci2862sup1.cif

e-65-o2055-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029924/ci2862Isup2.hkl

e-65-o2055-Isup2.hkl (128.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES