Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 25;65(Pt 8):o1964. doi: 10.1107/S1600536809028608

N′-(3,4-Dimethoxy­benzyl­idene)aceto­hydrazide

Bao-Cheng Zhou a,b,*, Lu-Ping Lv c, Wen-Bo Yu c, Wei-Wei Li c, Xian-Chao Hu d
PMCID: PMC2977217  PMID: 21583641

Abstract

The asymmetric unit of the title compound, C11H14N2O3, contains two independent mol­ecules with close conformations; the C=N—N—C torsion angle is 176.4 (1)° in both mol­ecules. In the crystal, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into chains running along the [01Inline graphic] direction.

Related literature

For general background to the applications of Schiff bases, see: Cimerman et al. (1997); Offe et al. (1952); Richardson et al. (1988). For related structures, see: Li & Jian (2008); Tamboura et al. (2009).graphic file with name e-65-o1964-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O3

  • M r = 222.24

  • Triclinic, Inline graphic

  • a = 8.339 (3) Å

  • b = 8.349 (3) Å

  • c = 8.663 (3) Å

  • α = 94.717 (12)°

  • β = 95.210 (8)°

  • γ = 94.298 (12)°

  • V = 596.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 223 K

  • 0.24 × 0.21 × 0.19 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.987, T max = 0.990

  • 3236 measured reflections

  • 2054 independent reflections

  • 1890 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.110

  • S = 1.12

  • 2054 reflections

  • 290 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028608/cv2586sup1.cif

e-65-o1964-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028608/cv2586Isup2.hkl

e-65-o1964-Isup2.hkl (98.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.86 2.11 2.950 (3) 165
N2—H2⋯O5i 0.86 2.54 3.154 (3) 129
C7—H7⋯O6 0.93 2.52 3.372 (3) 152
C12—H12B⋯O3ii 0.96 2.51 3.434 (4) 162
C12—H12C⋯O6iii 0.96 2.45 3.367 (4) 159
C16—H18⋯O2iv 0.93 2.45 3.244 (3) 144
N4—H4⋯O3v 0.86 2.08 2.907 (3) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank Zhejiang Sci-tech University and the Science and Technology Project of Zhejiang Province for financial support (grant No. 2007 F70077) .

supplementary crystallographic information

Comment

Schiff bases have attracted much attention due to their possible analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). We report here the crystal structure of the title compound.

The title compound (Fig. 1) crystallizes with two independent molecules in the asymmetric unit. The side chains in the two independent molecules have the same orientations, with the C═N—N—C torsion angle being 176.4 (1)° in both molecules. The N1/N2//O3/C9/C10/C11 and N3/N4/O6/C20/C21/C22 planes form dihedral angles of 6.00 (5)° and 4.38 (9)°, respectively, with the C2—C7 and C13—C18 planes. The dihedral angle between the two independent benzene rings is 79.39 (7)°. The bond lengths and angles are comparable to those observed for N'-[1-(4-methoxyphenyl)ethylidene]acetohydrazide (Li et al., 2008).

In the crystal structure, the molecules are linked into chains running along the [01-1] by N—H···O and C—H···O hydrogen bonds(Table 1).

Experimental

3,4-Methoxybenzaldehyde (1.66 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in stirred methanol (25 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 85% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 468–470 K).

Refinement

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). In the absence of significant anomalous scatterers, 1140 Friedel pairs were averaged.

Figures

Fig. 1.

Fig. 1.

The content of asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C11H14N2O3 Z = 2
Mr = 222.24 F(000) = 236
Triclinic, P1 Dx = 1.237 Mg m3
Hall symbol: P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.339 (3) Å Cell parameters from 2054 reflections
b = 8.349 (3) Å θ = 2.4–25.0°
c = 8.663 (3) Å µ = 0.09 mm1
α = 94.717 (12)° T = 223 K
β = 95.210 (8)° Block, colourless
γ = 94.298 (12)° 0.24 × 0.21 × 0.19 mm
V = 596.6 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 2054 independent reflections
Radiation source: fine-focus sealed tube 1890 reflections with I > 2σ(I)
graphite Rint = 0.017
φ and ω scans θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −9→9
Tmin = 0.987, Tmax = 0.990 k = −9→9
3236 measured reflections l = −10→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.0315P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
2054 reflections Δρmax = 0.18 e Å3
290 parameters Δρmin = −0.15 e Å3
3 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.101 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O4 0.0007 (2) −0.4436 (3) 0.6700 (2) 0.0538 (6)
O5 0.2416 (3) −0.2594 (3) 0.8028 (3) 0.0604 (6)
O2 0.6714 (3) 0.0884 (3) 1.2796 (3) 0.0691 (7)
O3 −0.0291 (3) 0.4482 (3) 1.2193 (3) 0.0668 (7)
N2 0.0775 (3) 0.4780 (3) 0.9931 (3) 0.0520 (6)
H2 0.0686 0.5156 0.9036 0.062*
O1 0.8549 (3) 0.0361 (3) 1.0637 (3) 0.0659 (7)
N3 0.2418 (3) 0.2632 (3) 0.5009 (3) 0.0473 (6)
N1 0.2086 (3) 0.3943 (3) 1.0364 (3) 0.0476 (6)
C15 0.1580 (3) −0.1968 (3) 0.6814 (3) 0.0428 (6)
O6 0.4783 (3) 0.5122 (3) 0.5771 (3) 0.0796 (8)
C18 0.1933 (3) −0.0476 (4) 0.6295 (3) 0.0449 (6)
H17 0.2816 0.0189 0.6767 0.054*
C6 0.4492 (3) 0.2834 (3) 0.9661 (3) 0.0460 (7)
N4 0.2566 (3) 0.4016 (3) 0.4235 (3) 0.0508 (6)
H4 0.1872 0.4136 0.3465 0.061*
C17 0.0956 (3) 0.0041 (4) 0.5047 (3) 0.0456 (7)
C2 0.7255 (3) 0.1177 (4) 1.0226 (3) 0.0479 (7)
C9 0.3061 (4) 0.3708 (4) 0.9334 (3) 0.0474 (7)
H9 0.2861 0.4097 0.8365 0.057*
C5 0.4882 (3) 0.2291 (4) 1.1140 (3) 0.0476 (7)
H6 0.4221 0.2488 1.1932 0.057*
C20 0.1279 (4) 0.1605 (4) 0.4428 (3) 0.0497 (7)
H20 0.0619 0.1854 0.3571 0.060*
C10 −0.0362 (4) 0.5003 (3) 1.0920 (3) 0.0484 (7)
C14 −0.0720 (4) −0.2478 (4) 0.4888 (4) 0.0535 (7)
H14 −0.1612 −0.3137 0.4425 0.064*
C13 0.0239 (3) −0.2980 (3) 0.6102 (3) 0.0446 (7)
C7 0.5492 (4) 0.2542 (4) 0.8501 (3) 0.0508 (7)
H7 0.5252 0.2903 0.7526 0.061*
C16 −0.0345 (4) −0.0966 (4) 0.4350 (4) 0.0556 (8)
H18 −0.0980 −0.0638 0.3515 0.067*
C11 −0.1735 (4) 0.5935 (5) 1.0337 (4) 0.0623 (8)
H11A −0.1585 0.6212 0.9303 0.093*
H11B −0.1758 0.6903 1.1012 0.093*
H11C −0.2737 0.5286 1.0324 0.093*
C4 0.6230 (4) 0.1474 (4) 1.1414 (3) 0.0495 (7)
C3 0.6859 (4) 0.1710 (4) 0.8788 (4) 0.0548 (8)
H3 0.7517 0.1510 0.7994 0.066*
C21 0.3770 (4) 0.5174 (4) 0.4662 (3) 0.0524 (7)
C12 −0.1272 (4) −0.5549 (5) 0.5953 (4) 0.0641 (9)
H12A −0.1310 −0.6517 0.6478 0.096*
H12B −0.1082 −0.5803 0.4887 0.096*
H12C −0.2282 −0.5072 0.5992 0.096*
C22 0.3783 (5) 0.6553 (4) 0.3640 (5) 0.0694 (9)
H22A 0.2882 0.6378 0.2856 0.104*
H22B 0.4771 0.6615 0.3151 0.104*
H22C 0.3704 0.7545 0.4263 0.104*
C8 0.5745 (5) 0.1116 (5) 1.4029 (4) 0.0672 (9)
H5A 0.6225 0.0673 1.4932 0.101*
H5B 0.4687 0.0584 1.3734 0.101*
H5C 0.5660 0.2248 1.4263 0.101*
C1 0.9669 (5) 0.0112 (5) 0.9511 (5) 0.0775 (11)
H1A 1.0525 −0.0478 0.9934 0.116*
H1B 1.0112 0.1136 0.9244 0.116*
H1C 0.9125 −0.0489 0.8596 0.116*
C19 0.3937 (5) −0.1813 (5) 0.8631 (5) 0.0800 (12)
H16A 0.4381 −0.2371 0.9475 0.120*
H16B 0.3805 −0.0720 0.9001 0.120*
H16C 0.4656 −0.1820 0.7826 0.120*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O4 0.0553 (11) 0.0539 (13) 0.0528 (12) −0.0019 (9) −0.0015 (9) 0.0211 (10)
O5 0.0625 (12) 0.0572 (13) 0.0598 (12) −0.0038 (10) −0.0176 (10) 0.0294 (10)
O2 0.0710 (15) 0.1024 (19) 0.0436 (11) 0.0453 (14) 0.0073 (10) 0.0281 (12)
O3 0.0708 (15) 0.0814 (16) 0.0526 (13) 0.0172 (12) 0.0043 (11) 0.0239 (12)
N2 0.0547 (13) 0.0591 (15) 0.0458 (14) 0.0141 (11) −0.0031 (12) 0.0261 (12)
O1 0.0580 (13) 0.0810 (16) 0.0649 (15) 0.0280 (12) 0.0127 (11) 0.0158 (12)
N3 0.0566 (14) 0.0477 (14) 0.0414 (13) 0.0132 (11) 0.0059 (11) 0.0173 (11)
N1 0.0507 (13) 0.0483 (14) 0.0447 (13) 0.0096 (10) −0.0062 (11) 0.0161 (10)
C15 0.0420 (14) 0.0495 (16) 0.0393 (14) 0.0100 (12) 0.0007 (11) 0.0161 (12)
O6 0.0796 (17) 0.0751 (17) 0.0801 (18) 0.0006 (13) −0.0203 (14) 0.0187 (14)
C18 0.0451 (14) 0.0492 (16) 0.0418 (14) 0.0081 (12) 0.0012 (11) 0.0125 (12)
C6 0.0512 (15) 0.0472 (16) 0.0384 (14) 0.0000 (12) −0.0047 (12) 0.0102 (12)
N4 0.0613 (14) 0.0500 (14) 0.0431 (13) 0.0082 (11) −0.0015 (11) 0.0199 (11)
C17 0.0505 (16) 0.0472 (16) 0.0422 (15) 0.0143 (12) 0.0045 (12) 0.0128 (12)
C2 0.0483 (16) 0.0502 (17) 0.0464 (16) 0.0092 (13) 0.0046 (13) 0.0073 (13)
C9 0.0559 (16) 0.0490 (16) 0.0377 (14) 0.0054 (12) −0.0041 (12) 0.0151 (12)
C5 0.0508 (16) 0.0535 (17) 0.0398 (14) 0.0120 (13) 0.0009 (12) 0.0089 (12)
C20 0.0583 (17) 0.0485 (17) 0.0444 (15) 0.0142 (13) −0.0010 (13) 0.0150 (13)
C10 0.0560 (17) 0.0440 (16) 0.0443 (16) 0.0034 (12) −0.0055 (14) 0.0100 (12)
C14 0.0471 (15) 0.0567 (18) 0.0551 (18) 0.0026 (13) −0.0091 (13) 0.0126 (14)
C13 0.0463 (15) 0.0473 (16) 0.0425 (15) 0.0068 (12) 0.0039 (12) 0.0154 (12)
C7 0.0595 (18) 0.0554 (17) 0.0379 (14) 0.0002 (14) 0.0021 (13) 0.0138 (13)
C16 0.0579 (17) 0.0571 (19) 0.0532 (18) 0.0137 (14) −0.0092 (14) 0.0207 (15)
C11 0.063 (2) 0.063 (2) 0.0614 (19) 0.0159 (16) 0.0004 (16) 0.0106 (16)
C4 0.0532 (16) 0.0593 (18) 0.0381 (15) 0.0133 (14) −0.0005 (12) 0.0137 (13)
C3 0.0588 (17) 0.0587 (18) 0.0487 (17) 0.0019 (14) 0.0106 (14) 0.0117 (14)
C21 0.0583 (18) 0.0516 (18) 0.0488 (17) 0.0116 (14) 0.0021 (14) 0.0097 (13)
C12 0.066 (2) 0.065 (2) 0.060 (2) −0.0107 (16) 0.0014 (16) 0.0203 (16)
C22 0.085 (2) 0.0533 (19) 0.071 (2) 0.0030 (17) 0.0061 (19) 0.0154 (17)
C8 0.081 (2) 0.087 (2) 0.0413 (17) 0.0353 (19) 0.0107 (16) 0.0201 (16)
C1 0.063 (2) 0.078 (3) 0.099 (3) 0.0206 (18) 0.031 (2) 0.010 (2)
C19 0.073 (2) 0.073 (2) 0.088 (3) −0.0081 (18) −0.037 (2) 0.033 (2)

Geometric parameters (Å, °)

O4—C13 1.367 (3) C5—H6 0.9300
O4—C12 1.431 (4) C20—H20 0.9300
O5—C15 1.370 (3) C10—C11 1.505 (4)
O5—C19 1.417 (4) C14—C13 1.376 (4)
O2—C4 1.370 (3) C14—C16 1.405 (4)
O2—C8 1.407 (4) C14—H14 0.9300
O3—C10 1.216 (4) C7—C3 1.393 (5)
N2—C10 1.348 (4) C7—H7 0.9300
N2—N1 1.380 (3) C16—H18 0.9300
N2—H2 0.8600 C11—H11A 0.9600
O1—C2 1.355 (4) C11—H11B 0.9600
O1—C1 1.424 (5) C11—H11C 0.9600
N3—C20 1.270 (4) C3—H3 0.9300
N3—N4 1.385 (3) C21—O6 1.225 (4)
N1—C9 1.274 (4) C21—C22 1.510 (5)
C15—C18 1.379 (4) C12—H12A 0.9600
C15—C13 1.412 (4) C12—H12B 0.9600
O6—C21 1.225 (4) C12—H12C 0.9600
C18—C17 1.410 (4) C22—H22A 0.9600
C18—H17 0.9300 C22—H22B 0.9600
C6—C7 1.381 (4) C22—H22C 0.9600
C6—C5 1.413 (4) C8—H5A 0.9600
C6—C9 1.463 (4) C8—H5B 0.9600
N4—C21 1.345 (4) C8—H5C 0.9600
N4—H4 0.8600 C1—H1A 0.9600
C17—C16 1.381 (4) C1—H1B 0.9600
C17—C20 1.468 (4) C1—H1C 0.9600
C2—C3 1.377 (4) C19—H16A 0.9600
C2—C4 1.415 (4) C19—H16B 0.9600
C9—H9 0.9300 C19—H16C 0.9600
C5—C4 1.370 (4)
C13—O4—C12 117.5 (2) C17—C16—H18 119.6
C15—O5—C19 118.3 (2) C14—C16—H18 119.6
C4—O2—C8 117.6 (2) C10—C11—H11A 109.5
C10—N2—N1 119.6 (2) C10—C11—H11B 109.5
C10—N2—H2 120.2 H11A—C11—H11B 109.5
N1—N2—H2 120.2 C10—C11—H11C 109.5
C2—O1—C1 117.2 (3) H11A—C11—H11C 109.5
C20—N3—N4 114.6 (2) H11B—C11—H11C 109.5
C9—N1—N2 115.8 (2) C5—C4—O2 125.2 (3)
O5—C15—C18 125.6 (3) C5—C4—C2 120.5 (2)
O5—C15—C13 114.2 (2) O2—C4—C2 114.3 (2)
C18—C15—C13 120.2 (2) C2—C3—C7 121.2 (3)
C15—C18—C17 120.0 (3) C2—C3—H3 119.4
C15—C18—H17 120.0 C7—C3—H3 119.4
C17—C18—H17 120.0 O6—C21—N4 123.7 (3)
C7—C6—C5 119.2 (3) O6—C21—N4 123.7 (3)
C7—C6—C9 119.3 (2) O6—C21—C22 122.4 (3)
C5—C6—C9 121.5 (3) O6—C21—C22 122.4 (3)
C21—N4—N3 121.4 (2) N4—C21—C22 114.0 (3)
C21—N4—H4 119.3 O4—C12—H12A 109.5
N3—N4—H4 119.3 O4—C12—H12B 109.5
C16—C17—C18 119.3 (2) H12A—C12—H12B 109.5
C16—C17—C20 118.0 (2) O4—C12—H12C 109.5
C18—C17—C20 122.7 (3) H12A—C12—H12C 109.5
O1—C2—C3 126.3 (3) H12B—C12—H12C 109.5
O1—C2—C4 115.0 (2) C21—C22—H22A 109.5
C3—C2—C4 118.6 (3) C21—C22—H22B 109.5
N1—C9—C6 120.6 (2) H22A—C22—H22B 109.5
N1—C9—H9 119.7 C21—C22—H22C 109.5
C6—C9—H9 119.7 H22A—C22—H22C 109.5
C4—C5—C6 120.3 (3) H22B—C22—H22C 109.5
C4—C5—H6 119.8 O2—C8—H5A 109.5
C6—C5—H6 119.8 O2—C8—H5B 109.5
N3—C20—C17 122.9 (3) H5A—C8—H5B 109.5
N3—C20—H20 118.5 O2—C8—H5C 109.5
C17—C20—H20 118.5 H5A—C8—H5C 109.5
O3—C10—N2 122.5 (3) H5B—C8—H5C 109.5
O3—C10—C11 122.2 (3) O1—C1—H1A 109.5
N2—C10—C11 115.3 (3) O1—C1—H1B 109.5
C13—C14—C16 119.6 (3) H1A—C1—H1B 109.5
C13—C14—H14 120.2 O1—C1—H1C 109.5
C16—C14—H14 120.2 H1A—C1—H1C 109.5
O4—C13—C14 124.7 (2) H1B—C1—H1C 109.5
O4—C13—C15 115.3 (2) O5—C19—H16A 109.5
C14—C13—C15 120.0 (2) O5—C19—H16B 109.5
C6—C7—C3 120.2 (3) H16A—C19—H16B 109.5
C6—C7—H7 119.9 O5—C19—H16C 109.5
C3—C7—H7 119.9 H16A—C19—H16C 109.5
C17—C16—C14 120.9 (2) H16B—C19—H16C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O4i 0.86 2.11 2.950 (3) 165
N2—H2···O5i 0.86 2.54 3.154 (3) 129
C7—H7···O6 0.93 2.52 3.372 (3) 152
C12—H12B···O3ii 0.96 2.51 3.434 (4) 162
C12—H12C···O6iii 0.96 2.45 3.367 (4) 159
C16—H18···O2iv 0.93 2.45 3.244 (3) 144
N4—H4···O3v 0.86 2.08 2.907 (3) 161

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z−1; (iii) x−1, y−1, z; (iv) x−1, y, z−1; (v) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2586).

References

  1. Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal Chim. Acta, 343, 145–153.
  3. Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409. [DOI] [PMC free article] [PubMed]
  4. Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.
  5. Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028608/cv2586sup1.cif

e-65-o1964-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028608/cv2586Isup2.hkl

e-65-o1964-Isup2.hkl (98.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES