Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 29;65(Pt 8):o2006. doi: 10.1107/S1600536809029092

4-[(1E,3E,5E)-6-(4-Pyrid­yl)hexa-1,3,5-trien­yl]pyridine

Mamoun M Bader a,*
PMCID: PMC2977225  PMID: 21583677

Abstract

The two independent mol­ecules in the asymmetric unit of the title compound, C16H14N2, are planar [dihedral angle between the terminal pyridine rings = 1.76 (2)°] and each display an all-trans configuration of C=C double bonds. One of the two mol­ecules lies about a center of inversion. The dihedral angle between the two pyridine rings in the mol­ecule lying on a general position is 1.65 (2)°.

Related literature

For acceptor-terminated polyenes, see: Gao et al. (2004). For the synthesis, see: Woitellier et al. (1989). For a related structure, see: Pham (2009).graphic file with name e-65-o2006-scheme1.jpg

Experimental

Crystal data

  • C16H14N2

  • M r = 234.29

  • Monoclinic, Inline graphic

  • a = 5.837 (1) Å

  • b = 17.171 (4) Å

  • c = 19.227 (4) Å

  • β = 97.685 (4)°

  • V = 1909.8 (7) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.44 × 0.24 × 0.22 mm

Data collection

  • Bruker SMART Platform CCD diffractometer

  • Absorption correction: none

  • 18771 measured reflections

  • 3366 independent reflections

  • 2460 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.089

  • S = 1.01

  • 3366 reflections

  • 328 parameters

  • All H-atom parameters refined

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029092/ng2615sup1.cif

e-65-o2006-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029092/ng2615Isup2.hkl

e-65-o2006-Isup2.hkl (165.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported in part by Research Development grants from the Pennsylvania State University and partially by the MRSEC Program of the National Science Foundation under award No. DMR-0819885. The author also acknowledges William W. Brennessel, Victor G. Young Jr and the X-ray Crystallographic Laboratory at the University of Minnesota.

supplementary crystallographic information

Comment

Pyridyl-terminated polyenes have been investigated for studying electron reactions with applications in biology, inorganic reaction mechanisms and molecular electronics. They have also been used in the synthesis of coordination polymers as well as template for solid state reactions.

For related systems of acceptor terminated polyenes, see: Gao et al. (2004); Pham (2009). For literature related to the synthesis, see: Woitellier et al. (1989).

Experimental

Synthesis was carried out following literature procedures (Woitellier et al., 1989) as follows: a solution of potassium tert-butoxide (1 2. l g in 200 ml of glyme) was added dropwise to a solution of tetraethyl ((E)-2-butene-1,4-diyl)diphosphonate (16.4 g, 0.05 mol) and pyridine-4-carboxaldehyde (10.70 g, 0.10 mol) in 100 ml of glyme at room temperature. After the addition of the base was complete, the resulting mixture was stirred at room temperature for 16 h. Cold water (ca 300–400 ml) was added and the product isolated by vacuum filtration (3.5 g, 30% crude yield) and recrystallized from acetone (2.3 g, 19%): mp 196–197. Crystals were grown from DMF.

Refinement

All hydrogen atoms were found from the difference map and refined with individual isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

Ellipsoid plot

Fig. 2.

Fig. 2.

4-((1E,3E,5E)-6-(pyridin-4-yl)hexa-1,3,5-trienyl)pyridine.

Fig. 3.

Fig. 3.

Crystal packing viewed along the a axis.

Crystal data

C16H14N2 F(000) = 744
Mr = 234.29 Dx = 1.222 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 867 reflections
a = 5.837 (1) Å θ = 2.5–27.5°
b = 17.171 (4) Å µ = 0.07 mm1
c = 19.227 (4) Å T = 173 K
β = 97.685 (4)° Block, yellow
V = 1909.8 (7) Å3 0.44 × 0.24 × 0.22 mm
Z = 6

Data collection

Bruker SMART Platform CCD diffractometer 2460 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tube Rint = 0.028
graphite θmax = 25.0°, θmin = 1.6°
ω scans h = −6→6
18771 measured reflections k = −20→20
3366 independent reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.048P)2 + 0.1535P] where P = (Fo2 + 2Fc2)/3
3366 reflections (Δ/σ)max = 0.001
328 parameters Δρmax = 0.09 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.5720 (2) 0.58755 (7) −0.07734 (6) 0.0569 (3)
N2 −0.45576 (19) 1.10512 (6) 0.36976 (5) 0.0481 (3)
N3 −0.00550 (19) 1.24674 (6) 0.23495 (6) 0.0497 (3)
C1 0.6991 (3) 0.65228 (9) −0.06772 (8) 0.0543 (4)
H1 0.838 (3) 0.6547 (8) −0.0931 (7) 0.062 (4)*
C2 0.6494 (2) 0.71361 (8) −0.02588 (7) 0.0462 (3)
H2 0.751 (2) 0.7581 (8) −0.0194 (7) 0.052 (4)*
C3 0.4553 (2) 0.71081 (7) 0.00886 (6) 0.0388 (3)
C4 0.3222 (2) 0.64283 (7) −0.00011 (7) 0.0431 (3)
H4 0.185 (2) 0.6363 (7) 0.0227 (6) 0.044 (3)*
C5 0.3870 (3) 0.58440 (8) −0.04271 (7) 0.0511 (4)
H5 0.293 (2) 0.5370 (8) −0.0495 (6) 0.056 (4)*
C6 −0.5830 (2) 1.04076 (8) 0.35549 (7) 0.0479 (3)
H6 −0.722 (3) 1.0359 (8) 0.3800 (7) 0.060 (4)*
C7 −0.5305 (2) 0.98292 (8) 0.31014 (7) 0.0445 (3)
H7 −0.628 (2) 0.9374 (8) 0.3018 (6) 0.049 (4)*
C8 −0.3348 (2) 0.98987 (7) 0.27589 (6) 0.0385 (3)
C9 −0.2039 (2) 1.05746 (7) 0.29001 (6) 0.0411 (3)
H9 −0.064 (2) 1.0657 (7) 0.2688 (6) 0.041 (3)*
C10 −0.2692 (2) 1.11169 (8) 0.33646 (7) 0.0449 (3)
H10 −0.176 (2) 1.1575 (7) 0.3472 (6) 0.044 (3)*
C11 −0.1535 (2) 1.23391 (8) 0.17687 (7) 0.0487 (3)
H11 −0.298 (2) 1.2632 (7) 0.1723 (7) 0.055 (4)*
C12 −0.1104 (2) 1.18348 (8) 0.12416 (7) 0.0453 (3)
H12 −0.223 (2) 1.1766 (8) 0.0831 (7) 0.057 (4)*
C13 0.0985 (2) 1.14333 (7) 0.12916 (6) 0.0384 (3)
C14 0.2518 (2) 1.15541 (7) 0.19037 (7) 0.0415 (3)
H14 0.401 (2) 1.1294 (7) 0.1986 (6) 0.049 (4)*
C15 0.1931 (2) 1.20645 (8) 0.24030 (7) 0.0473 (3)
H15 0.300 (2) 1.2158 (8) 0.2839 (7) 0.059 (4)*
C16 0.3959 (2) 0.77741 (7) 0.05039 (6) 0.0414 (3)
H16 0.504 (2) 0.8205 (7) 0.0528 (6) 0.040 (3)*
C17 0.2082 (2) 0.78441 (7) 0.08307 (6) 0.0404 (3)
H17 0.100 (2) 0.7412 (7) 0.0822 (6) 0.043 (3)*
C18 0.1516 (2) 0.85257 (7) 0.12091 (6) 0.0432 (3)
H18 0.260 (2) 0.8965 (7) 0.1235 (6) 0.049 (4)*
C19 −0.0351 (2) 0.85901 (7) 0.15427 (7) 0.0431 (3)
H19 −0.140 (2) 0.8147 (7) 0.1538 (6) 0.047 (4)*
C20 −0.0919 (2) 0.92526 (7) 0.19440 (6) 0.0414 (3)
H20 0.012 (2) 0.9683 (8) 0.1966 (6) 0.044 (3)*
C21 −0.2736 (2) 0.92738 (7) 0.23017 (6) 0.0420 (3)
H21 −0.376 (2) 0.8825 (8) 0.2281 (6) 0.049 (4)*
C22 0.1515 (2) 1.09529 (7) 0.07030 (7) 0.0420 (3)
H22 0.030 (2) 1.0935 (7) 0.0295 (7) 0.050 (4)*
C23 0.3498 (2) 1.05781 (7) 0.06546 (7) 0.0417 (3)
H23 0.473 (2) 1.0581 (7) 0.1052 (6) 0.044 (3)*
C24 0.3997 (2) 1.01778 (7) 0.00320 (7) 0.0439 (3)
H24 0.275 (2) 1.0192 (7) −0.0377 (7) 0.052 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0517 (7) 0.0549 (8) 0.0644 (8) 0.0045 (6) 0.0091 (6) −0.0115 (6)
N2 0.0471 (7) 0.0512 (7) 0.0468 (6) 0.0063 (5) 0.0095 (5) 0.0009 (5)
N3 0.0557 (7) 0.0448 (6) 0.0486 (7) 0.0072 (5) 0.0073 (6) −0.0015 (5)
C1 0.0454 (9) 0.0607 (9) 0.0581 (9) 0.0038 (7) 0.0118 (7) −0.0031 (7)
C2 0.0441 (8) 0.0453 (8) 0.0494 (8) −0.0044 (6) 0.0065 (6) 0.0033 (6)
C3 0.0428 (7) 0.0382 (7) 0.0340 (6) 0.0018 (5) 0.0002 (5) 0.0060 (5)
C4 0.0428 (8) 0.0420 (7) 0.0441 (7) −0.0017 (6) 0.0049 (6) 0.0013 (6)
C5 0.0499 (9) 0.0437 (8) 0.0587 (9) −0.0027 (6) 0.0034 (7) −0.0047 (7)
C6 0.0413 (8) 0.0560 (9) 0.0477 (8) 0.0050 (6) 0.0107 (6) 0.0079 (7)
C7 0.0410 (8) 0.0444 (8) 0.0479 (8) −0.0026 (6) 0.0052 (6) 0.0071 (6)
C8 0.0396 (7) 0.0377 (7) 0.0371 (7) 0.0021 (5) 0.0012 (5) 0.0065 (5)
C9 0.0384 (7) 0.0425 (7) 0.0431 (7) −0.0015 (6) 0.0076 (6) 0.0014 (6)
C10 0.0451 (8) 0.0422 (8) 0.0473 (8) −0.0008 (6) 0.0060 (6) −0.0024 (6)
C11 0.0467 (8) 0.0480 (8) 0.0518 (8) 0.0099 (6) 0.0080 (7) 0.0049 (6)
C12 0.0437 (8) 0.0490 (8) 0.0417 (8) 0.0016 (6) −0.0003 (6) 0.0050 (6)
C13 0.0437 (7) 0.0339 (6) 0.0377 (7) −0.0030 (5) 0.0060 (6) 0.0042 (5)
C14 0.0411 (8) 0.0376 (7) 0.0450 (7) 0.0022 (6) 0.0027 (6) −0.0003 (6)
C15 0.0531 (9) 0.0423 (7) 0.0445 (8) 0.0033 (6) −0.0009 (6) −0.0040 (6)
C16 0.0497 (8) 0.0359 (7) 0.0379 (7) −0.0048 (6) 0.0029 (6) 0.0035 (5)
C17 0.0504 (8) 0.0361 (7) 0.0340 (7) −0.0020 (6) 0.0027 (6) 0.0031 (5)
C18 0.0553 (9) 0.0364 (7) 0.0370 (7) −0.0019 (6) 0.0026 (6) 0.0023 (6)
C19 0.0517 (8) 0.0369 (7) 0.0394 (7) −0.0006 (6) 0.0011 (6) 0.0013 (6)
C20 0.0476 (8) 0.0364 (7) 0.0391 (7) −0.0025 (6) 0.0022 (6) 0.0018 (5)
C21 0.0463 (8) 0.0356 (7) 0.0431 (7) −0.0027 (6) 0.0022 (6) 0.0030 (6)
C22 0.0480 (8) 0.0395 (7) 0.0377 (7) −0.0033 (6) 0.0028 (6) 0.0017 (5)
C23 0.0503 (8) 0.0351 (7) 0.0394 (7) −0.0046 (6) 0.0049 (6) 0.0004 (5)
C24 0.0541 (8) 0.0363 (7) 0.0415 (7) −0.0046 (6) 0.0073 (7) 0.0006 (6)

Geometric parameters (Å, °)

N1—C1 1.3355 (18) C11—H11 0.975 (14)
N1—C5 1.3436 (18) C12—C13 1.3931 (18)
N2—C6 1.3394 (17) C12—H12 0.964 (14)
N2—C10 1.3396 (16) C13—C14 1.3952 (17)
N3—C11 1.3354 (17) C13—C22 1.4663 (17)
N3—C15 1.3422 (17) C14—C15 1.3765 (18)
C1—C2 1.380 (2) C14—H14 0.971 (13)
C1—H1 0.999 (15) C15—H15 0.989 (13)
C2—C3 1.3910 (18) C16—C17 1.3394 (18)
C2—H2 0.964 (13) C16—H16 0.969 (12)
C3—C4 1.3999 (18) C17—C18 1.4395 (18)
C3—C16 1.4627 (18) C17—H17 0.973 (13)
C4—C5 1.3796 (19) C18—C19 1.3408 (19)
C4—H4 0.970 (13) C18—H18 0.982 (13)
C5—H5 0.980 (14) C19—C20 1.4382 (18)
C6—C7 1.3830 (19) C19—H19 0.976 (13)
C6—H6 0.997 (14) C20—C21 1.3390 (18)
C7—C8 1.3974 (18) C20—H20 0.954 (13)
C7—H7 0.969 (13) C21—H21 0.973 (13)
C8—C9 1.3961 (17) C22—C23 1.3380 (18)
C8—C21 1.4616 (17) C22—H22 0.985 (13)
C9—C10 1.3788 (18) C23—C24 1.4436 (18)
C9—H9 0.969 (12) C23—H23 0.978 (12)
C10—H10 0.964 (13) C24—C24i 1.341 (3)
C11—C12 1.3815 (18) C24—H24 0.997 (13)
C1—N1—C5 115.69 (12) C13—C12—H12 119.3 (8)
C6—N2—C10 115.81 (12) C12—C13—C14 116.18 (12)
C11—N3—C15 115.75 (12) C12—C13—C22 119.88 (11)
N1—C1—C2 124.04 (14) C14—C13—C22 123.85 (12)
N1—C1—H1 116.0 (8) C15—C14—C13 119.46 (12)
C2—C1—H1 120.0 (8) C15—C14—H14 118.7 (7)
C1—C2—C3 120.14 (13) C13—C14—H14 121.9 (7)
C1—C2—H2 120.4 (8) N3—C15—C14 124.58 (13)
C3—C2—H2 119.5 (8) N3—C15—H15 115.0 (8)
C2—C3—C4 116.35 (12) C14—C15—H15 120.4 (8)
C2—C3—C16 120.18 (12) C17—C16—C3 126.49 (12)
C4—C3—C16 123.45 (12) C17—C16—H16 118.4 (7)
C5—C4—C3 119.21 (13) C3—C16—H16 115.1 (7)
C5—C4—H4 119.6 (7) C16—C17—C18 124.57 (13)
C3—C4—H4 121.2 (7) C16—C17—H17 119.5 (7)
N1—C5—C4 124.55 (13) C18—C17—H17 115.9 (7)
N1—C5—H5 116.1 (8) C19—C18—C17 124.39 (13)
C4—C5—H5 119.3 (8) C19—C18—H18 118.2 (7)
N2—C6—C7 123.92 (13) C17—C18—H18 117.4 (7)
N2—C6—H6 116.0 (8) C18—C19—C20 125.63 (13)
C7—C6—H6 120.1 (8) C18—C19—H19 118.8 (7)
C6—C7—C8 119.99 (13) C20—C19—H19 115.5 (8)
C6—C7—H7 120.5 (8) C21—C20—C19 123.54 (13)
C8—C7—H7 119.5 (8) C21—C20—H20 119.9 (7)
C9—C8—C7 116.10 (12) C19—C20—H20 116.5 (7)
C9—C8—C21 123.76 (12) C20—C21—C8 127.09 (12)
C7—C8—C21 120.12 (12) C20—C21—H21 118.8 (7)
C10—C9—C8 119.73 (12) C8—C21—H21 114.1 (8)
C10—C9—H9 119.7 (7) C23—C22—C13 126.71 (12)
C8—C9—H9 120.5 (7) C23—C22—H22 117.8 (7)
N2—C10—C9 124.44 (13) C13—C22—H22 115.3 (7)
N2—C10—H10 115.9 (7) C22—C23—C24 124.00 (13)
C9—C10—H10 119.6 (7) C22—C23—H23 119.9 (7)
N3—C11—C12 123.79 (13) C24—C23—H23 116.1 (7)
N3—C11—H11 116.4 (8) C24i—C24—C23 124.67 (17)
C12—C11—H11 119.8 (8) C24i—C24—H24 119.5 (8)
C11—C12—C13 120.21 (13) C23—C24—H24 115.8 (8)
C11—C12—H12 120.5 (8)
C5—N1—C1—C2 −0.5 (2) C11—C12—C13—C22 −174.59 (11)
N1—C1—C2—C3 −0.7 (2) C12—C13—C14—C15 −1.72 (18)
C1—C2—C3—C4 1.43 (18) C22—C13—C14—C15 174.85 (12)
C1—C2—C3—C16 −176.92 (12) C11—N3—C15—C14 1.1 (2)
C2—C3—C4—C5 −1.03 (18) C13—C14—C15—N3 0.1 (2)
C16—C3—C4—C5 177.26 (11) C2—C3—C16—C17 175.93 (12)
C1—N1—C5—C4 0.9 (2) C4—C3—C16—C17 −2.3 (2)
C3—C4—C5—N1 −0.1 (2) C3—C16—C17—C18 −177.16 (11)
C10—N2—C6—C7 0.60 (19) C16—C17—C18—C19 −179.16 (12)
N2—C6—C7—C8 −0.2 (2) C17—C18—C19—C20 177.79 (11)
C6—C7—C8—C9 −0.64 (17) C18—C19—C20—C21 −176.06 (13)
C6—C7—C8—C21 177.48 (11) C19—C20—C21—C8 175.54 (11)
C7—C8—C9—C10 1.12 (17) C9—C8—C21—C20 −1.5 (2)
C21—C8—C9—C10 −176.93 (11) C7—C8—C21—C20 −179.51 (12)
C6—N2—C10—C9 −0.08 (19) C12—C13—C22—C23 175.18 (13)
C8—C9—C10—N2 −0.8 (2) C14—C13—C22—C23 −1.3 (2)
C15—N3—C11—C12 −0.6 (2) C13—C22—C23—C24 −173.53 (11)
N3—C11—C12—C13 −1.0 (2) C22—C23—C24—C24i 177.66 (15)
C11—C12—C13—C14 2.12 (18)

Symmetry codes: (i) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2615).

References

  1. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  3. Gao, X., Friscic, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed.43, 232–36. [DOI] [PubMed]
  4. Pham, P.-T. T. (2009). Acta Cryst. E65, o1806. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Woitellier, S., Launay, J. P. & Spangler, C. W. (1989). Inorg. Chem.28, 758–762.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029092/ng2615sup1.cif

e-65-o2006-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029092/ng2615Isup2.hkl

e-65-o2006-Isup2.hkl (165.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES