Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 4;65(Pt 8):o1752. doi: 10.1107/S1600536809024829

Methyl 2-methyl-2H-1,2,3-triazole-4-carboxyl­ate

K Prabakaran a, Venkatesha R Hathwar b, T Maiyalagan a, M V Kirthana a, F Nawaz Khan a,*
PMCID: PMC2977234  PMID: 21583463

Abstract

In the title compound, C5H7N3O2, all non-H atoms lie in a common plane, with a maximum deviation of 0.061 (2)° for the ester methyl C atom. The structure is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to the applications of triazoles and their derivatives, see: Abu-Orabi et al. (1989); Fan & Katritzky (1996); Dehne (1994); Wang et al. (1998). For a related structure, see: Prabakaran et al. (2009).graphic file with name e-65-o1752-scheme1.jpg

Experimental

Crystal data

  • C5H7N3O2

  • M r = 141.14

  • Monoclinic, Inline graphic

  • a = 3.9482 (10) Å

  • b = 7.9549 (15) Å

  • c = 21.655 (4) Å

  • β = 92.05 (2)°

  • V = 679.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 290 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Oxford Xcalibur Eos(Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlisPro RED; Oxford Diffraction, 2009) T min = 0.926, T max = 0.989

  • 7464 measured reflections

  • 1262 independent reflections

  • 910 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.119

  • S = 1.07

  • 1262 reflections

  • 93 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlisPro CCD (Oxford Diffraction, 2009); cell refinement: CrysAlisPro CCD; data reduction: CrysAlisPro RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024829/bt2973sup1.cif

e-65-o1752-sup1.cif (13.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024829/bt2973Isup2.hkl

e-65-o1752-Isup2.hkl (61.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.53 3.416 (3) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility setup under the IRHPA–DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

Triazoles and their derivatives find their application in pharmaceuticals, agrochemicals, dyes, photographic materials, and in corrosion inhibition (Fan & Katritzky, 1996; Dehne,1994; Abu-Orabi et al., 1989). In continuous of our earlier report (Prabakaran et al., 2009), here the crystal structure of the title compound is presented. All non-H atoms lie in a common plane with maximum deviation of 0.061 (2)° for atom C4. The packing is stabilized by C—H···O hydrogen bonds.

Experimental

To Methyl 1H-1,2,3-triazole-4-carboxylate (2 g) in dry DMF (15 ml) maintained at 273 K in nitrogen atmosphere, was added K2CO3 (1.3 g), metyliodide (ml), the mixture was then stirred at 273 K for 1hr, allowed to warm to room temperature and stirred till completion of reaction, monitored by TLC. The reaction mixture on LCMS analysis showed three isomers well separated with their significant retention time and high purity. Three fractions were identified by mass spectroscopy. The solvent was evaporated under vacuo and the residue was isolated into individual isomers by column chromatography. A portion of the mixture was also analysed by HPLC analysis and also isolated by preparative HPLC techniques. The single crystal of the title compound for X-ray structure anlaysis was obtained from ether solution by slow evaporation.

Refinement

All the H atoms in were positioned geometrically and refined using a riding model with C—H bond lenghts of 0.93 Å and 0.96 Å for aromatic and for methyl H atoms respectively and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(Cmethyl). The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of the asymmetric unit of (I) with 50% probability displacement ellipsoids.

Crystal data

C5H7N3O2 F(000) = 296
Mr = 141.14 Dx = 1.379 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 783 reflections
a = 3.9482 (10) Å θ = 2.0–21.4°
b = 7.9549 (15) Å µ = 0.11 mm1
c = 21.655 (4) Å T = 290 K
β = 92.05 (2)° Plate, colorless
V = 679.7 (2) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Oxford Xcalibur Eos(Nova) CCD detector diffractometer 1262 independent reflections
Radiation source: Enhance (Mo) X-ray Source 910 reflections with I > 2σ(I)
graphite Rint = 0.043
ω scans θmax = 25.5°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) h = −4→4
Tmin = 0.926, Tmax = 0.989 k = −9→9
7464 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.0659P] where P = (Fo2 + 2Fc2)/3
1262 reflections (Δ/σ)max < 0.001
93 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2453 (4) 0.56849 (18) 0.43005 (7) 0.0442 (4)
N2 0.3338 (4) 0.71794 (19) 0.45090 (7) 0.0449 (4)
N3 0.4803 (5) 0.8185 (2) 0.41047 (7) 0.0562 (5)
O1 0.3755 (4) 0.42664 (18) 0.27655 (6) 0.0620 (5)
O2 0.1319 (4) 0.29948 (17) 0.35597 (6) 0.0539 (4)
C1 0.4849 (6) 0.7258 (2) 0.35967 (9) 0.0547 (6)
H1 0.5707 0.7596 0.3222 0.066*
C2 0.3408 (5) 0.5700 (2) 0.37131 (8) 0.0407 (5)
C3 0.2884 (5) 0.4274 (2) 0.32930 (8) 0.0435 (5)
C4 0.0524 (6) 0.1556 (3) 0.31750 (10) 0.0634 (6)
H4A −0.0937 0.1895 0.2834 0.095*
H4B −0.0597 0.0720 0.3414 0.095*
H4C 0.2579 0.1095 0.3022 0.095*
C5 0.2690 (6) 0.7700 (3) 0.51385 (9) 0.0567 (6)
H5A 0.1463 0.6831 0.5342 0.085*
H5B 0.1374 0.8715 0.5130 0.085*
H5C 0.4805 0.7896 0.5359 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0534 (11) 0.0371 (9) 0.0423 (9) −0.0034 (7) 0.0041 (7) 0.0000 (7)
N2 0.0581 (11) 0.0348 (9) 0.0419 (9) −0.0033 (7) 0.0029 (7) −0.0004 (7)
N3 0.0755 (13) 0.0424 (10) 0.0511 (10) −0.0100 (9) 0.0069 (9) 0.0050 (8)
O1 0.0904 (12) 0.0553 (9) 0.0413 (8) 0.0058 (8) 0.0164 (7) 0.0007 (6)
O2 0.0715 (10) 0.0457 (8) 0.0450 (8) −0.0120 (7) 0.0066 (6) −0.0058 (6)
C1 0.0740 (15) 0.0480 (12) 0.0427 (11) −0.0060 (10) 0.0109 (10) 0.0065 (9)
C2 0.0454 (11) 0.0381 (10) 0.0388 (10) 0.0017 (8) 0.0034 (8) 0.0050 (8)
C3 0.0502 (12) 0.0422 (11) 0.0382 (10) 0.0072 (9) 0.0018 (8) 0.0038 (8)
C4 0.0752 (16) 0.0449 (12) 0.0699 (15) −0.0064 (11) 0.0016 (12) −0.0155 (10)
C5 0.0770 (16) 0.0479 (13) 0.0455 (11) −0.0022 (10) 0.0067 (10) −0.0084 (9)

Geometric parameters (Å, °)

N1—N2 1.315 (2) C1—H1 0.9300
N1—C2 1.340 (2) C2—C3 1.464 (3)
N2—N3 1.333 (2) C4—H4A 0.9600
N2—C5 1.456 (2) C4—H4B 0.9600
N3—C1 1.325 (2) C4—H4C 0.9600
O1—C3 1.205 (2) C5—H5A 0.9600
O2—C3 1.333 (2) C5—H5B 0.9600
O2—C4 1.444 (2) C5—H5C 0.9600
C1—C2 1.391 (3)
N2—N1—C2 103.75 (15) O2—C3—C2 112.31 (16)
N1—N2—N3 115.69 (15) O2—C4—H4A 109.5
N1—N2—C5 121.67 (15) O2—C4—H4B 109.5
N3—N2—C5 122.63 (16) H4A—C4—H4B 109.5
C1—N3—N2 103.33 (16) O2—C4—H4C 109.5
C3—O2—C4 116.74 (16) H4A—C4—H4C 109.5
N3—C1—C2 109.13 (17) H4B—C4—H4C 109.5
N3—C1—H1 125.4 N2—C5—H5A 109.5
C2—C1—H1 125.4 N2—C5—H5B 109.5
N1—C2—C1 108.10 (16) H5A—C5—H5B 109.5
N1—C2—C3 123.02 (17) N2—C5—H5C 109.5
C1—C2—C3 128.88 (17) H5A—C5—H5C 109.5
O1—C3—O2 124.03 (17) H5B—C5—H5C 109.5
O1—C3—C2 123.65 (18)
C2—N1—N2—N3 0.1 (2) N3—C1—C2—C3 179.47 (18)
C2—N1—N2—C5 179.01 (17) C4—O2—C3—O1 −2.7 (3)
N1—N2—N3—C1 0.2 (2) C4—O2—C3—C2 176.96 (16)
C5—N2—N3—C1 −178.75 (18) N1—C2—C3—O1 −179.38 (18)
N2—N3—C1—C2 −0.3 (2) C1—C2—C3—O1 1.7 (3)
N2—N1—C2—C1 −0.3 (2) N1—C2—C3—O2 1.0 (3)
N2—N1—C2—C3 −179.42 (17) C1—C2—C3—O2 −177.96 (19)
N3—C1—C2—N1 0.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···O1i 0.93 2.53 3.416 (3) 159

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2973).

References

  1. Abu-Orabi, S. T., Alfah, M. A., Jibril, I., Mari’i, F. M. & Ali, A. A. S. (1989). J. Heterocycl. Chem.26, 1461–1468.
  2. Dehne, H. (1994). Editor. Methoden der Organischen Chemie, 8th Ed., pp. 305–405. Stuttgart: Thieme.
  3. Fan, W.-Q. & Katritzky, A. R. (1996). In Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1–126. Oxford: Pergamon.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Oxford Diffraction (2009). CrysAlisPro CCD and CrysAlisPro RED, including ABSPACK Oxford Diffraction Ltd, Yarnton, England.
  7. Prabakaran, K., Maiyalagan, T., Hathwar, V. R., Kazak, C. & Khan, F. N. (2009). Acta Cryst. E65, o300. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927–1929.
  10. Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024829/bt2973sup1.cif

e-65-o1752-sup1.cif (13.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024829/bt2973Isup2.hkl

e-65-o1752-Isup2.hkl (61.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES