Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 22;65(Pt 8):m977. doi: 10.1107/S1600536809028347

Bis(1H-imidazole-κN 3)bis­(2-oxidopyridinium-3-carboxyl­ato-κ2 O 2,O 3)nickel(II)

Bing-Yu Zhang a, Jing-Jing Nie a, Duan-Jun Xu a,*
PMCID: PMC2977237  PMID: 21583420

Abstract

In the crystal structure of the title NiII complex, [Ni(C6H4NO3)2(C3H4N2)2], the NiII atom is located on a twofold rotation axis and is chelated by two oxidopyridiniumcarboxyl­ate anions and further cis-coordinated by two imidazole ligands in a distorted cis-N2O4 octa­hedral geometry. The C—O bond distance of 1.2573 (19) Å found for the non-coordinating O atom of the carboxyl­ate group indicates significant delocalization of π-electron density over this residue. Similarly, the C—O bond distance of 1.260 (2) Å in the heteroaromatic ring indicates delocalization between the deprotonated hydr­oxy group and the pyridinium ring. The uncoordinated carboxyl­ate O atom links with the imidazole and pyridinium rings of adjacent mol­ecules via N—H⋯O and C—H⋯O hydrogen bonding, leading to a two-dimensional array parallel to (100).

Related literature

For the nature of π-π stacking, see: Deisenhofer & Michel (1989); Xu et al. (2007); Li et al. (2005). For the short C—O bond distance between a pyridine ring and hydr­oxy-O atom in metal complexes of 2-oxidopyridinium-3-carboxyl­ate, see: Yao et al. (2004); Yan & Hu (2007a ,b ); Wen & Liu (2007).graphic file with name e-65-0m977-scheme1.jpg

Experimental

Crystal data

  • [Ni(C6H4NO3)2(C3H4N2)2]

  • M r = 471.08

  • Monoclinic, Inline graphic

  • a = 16.5603 (12) Å

  • b = 9.9687 (7) Å

  • c = 12.7981 (9) Å

  • β = 111.203 (2)°

  • V = 1969.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 294 K

  • 0.28 × 0.22 × 0.18 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.730, T max = 0.830

  • 10787 measured reflections

  • 1934 independent reflections

  • 1690 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.067

  • S = 1.09

  • 1934 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028347/tk2499sup1.cif

e-65-0m977-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028347/tk2499Isup2.hkl

e-65-0m977-Isup2.hkl (93.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.93 2.7848 (19) 177
N3—H3⋯O2ii 0.86 2.03 2.796 (2) 148
C3—H3A⋯O3iii 0.93 2.41 3.323 (2) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The project was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

As π-π stacking between aromatic rings is correlated with electron transfer process in some biological systems (Deisenhofer & Michel, 1989), metal complexes incorporating aromatic ligands have attracted much attention. As a part of an on-going investigation of π-π stacking (Xu et al., 2007a, b; Li et al., 2005), the title complex, (I), has been prepared and its crystal structure reported herein.

The analysis of (I) shows the Ni atom to be located on a 2-fold axis and to be chelated by two oxidopyridinium-carboxylate anions and two cis-orientated imidazole ligands to complete a distorted octahedral coordination geometry (Fig. 1). The carboxylate group is twisted with respect to the benzene ring with a dihedral angle of 22.09 (11)°. The C1—O3 bond distance of 1.260 (2) Å is much shorter than a normal single C—O bond, indicating delocalization of π-electron density over the deprotonated hydroxy group and the pyridinium ring, an observation which agrees with similiar features found in the other transition metal complexes of oxidopyridinium-carboxylate (Yao et al., 2004; Yan & Hu, 2007a,b; Wen & Liu, 2007).

The uncoordinated carboxyl-O atom simutaneously links the imidazole and pyridinium rings via N—H···O hydrogen bonding leading to a 2-D array (Table 2). Weak C—H···O hydrogen bonding is also present in the crystal structure but no π-π stacking is evident.

Experimental

2-Hydroxy-pyridine-3-carboxylic acid (0.13 g, 1 mmol), NaOH (0.04 g, 1 mmol), imidazole (0.14 g, 2 mmol) and NiCl2.6H2O (0.24 g, 1 mmol) were dissolved in water (15 ml). The solution was refluxed for 4.5 h. After cooling to room temperature, the solution was filtered. Single crystals of (I) were obtained from the filtrate after one week.

Refinement

H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding model approximation with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing 40% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) 1 - x, y, 1/2 - z].

Crystal data

[Ni(C6H4NO3)2(C3H4N2)2] F(000) = 968
Mr = 471.08 Dx = 1.589 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3268 reflections
a = 16.5603 (12) Å θ = 2.5–25.0°
b = 9.9687 (7) Å µ = 1.04 mm1
c = 12.7981 (9) Å T = 294 K
β = 111.203 (2)° Block, green
V = 1969.7 (2) Å3 0.28 × 0.22 × 0.18 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer 1934 independent reflections
Radiation source: fine-focus sealed tube 1690 reflections with I > 2σ(I)
graphite Rint = 0.026
Detector resolution: 10.00 pixels mm-1 θmax = 26.0°, θmin = 2.4°
ω scans h = −20→20
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −11→12
Tmin = 0.730, Tmax = 0.830 l = −15→15
10787 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0299P)2 + 1.5451P] where P = (Fo2 + 2Fc2)/3
1934 reflections (Δ/σ)max = 0.001
141 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni 0.5000 0.24819 (3) 0.2500 0.02609 (11)
N1 0.61183 (10) −0.12600 (15) 0.30054 (12) 0.0340 (4)
H1 0.6130 −0.1389 0.2346 0.041*
N2 0.58315 (9) 0.39012 (14) 0.22850 (12) 0.0307 (3)
N3 0.62487 (11) 0.55962 (16) 0.15138 (14) 0.0413 (4)
H3 0.6224 0.6275 0.1088 0.050*
O1 0.55981 (9) 0.25034 (11) 0.42031 (10) 0.0345 (3)
O2 0.62229 (8) 0.17047 (12) 0.59099 (9) 0.0370 (3)
O3 0.58766 (8) 0.09254 (12) 0.25646 (9) 0.0320 (3)
C1 0.59865 (11) 0.00219 (17) 0.32922 (13) 0.0269 (4)
C2 0.60022 (10) 0.01871 (17) 0.44182 (13) 0.0270 (4)
C3 0.61083 (12) −0.09161 (18) 0.50917 (14) 0.0347 (4)
H3A 0.6108 −0.0806 0.5813 0.042*
C4 0.62173 (15) −0.22061 (19) 0.47285 (16) 0.0429 (5)
H4 0.6278 −0.2947 0.5192 0.051*
C5 0.62318 (15) −0.23420 (18) 0.36860 (17) 0.0418 (5)
H5 0.6320 −0.3184 0.3433 0.050*
C6 0.59302 (11) 0.15609 (17) 0.48631 (13) 0.0273 (4)
C7 0.55757 (13) 0.48832 (18) 0.15514 (15) 0.0362 (4)
H7 0.5001 0.5059 0.1115 0.043*
C8 0.67175 (12) 0.4006 (2) 0.27398 (16) 0.0404 (4)
H8 0.7082 0.3442 0.3287 0.049*
C9 0.69804 (13) 0.5053 (2) 0.22712 (18) 0.0456 (5)
H9 0.7547 0.5343 0.2434 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.03550 (19) 0.02420 (17) 0.01909 (17) 0.000 0.01048 (13) 0.000
N1 0.0520 (9) 0.0317 (8) 0.0228 (7) 0.0040 (7) 0.0192 (7) −0.0015 (6)
N2 0.0348 (8) 0.0290 (8) 0.0276 (7) −0.0003 (6) 0.0106 (6) 0.0026 (6)
N3 0.0577 (11) 0.0309 (8) 0.0428 (9) −0.0040 (7) 0.0272 (8) 0.0049 (7)
O1 0.0514 (8) 0.0281 (6) 0.0213 (6) 0.0057 (5) 0.0098 (6) 0.0002 (5)
O2 0.0551 (8) 0.0371 (7) 0.0175 (6) 0.0040 (6) 0.0117 (5) −0.0025 (5)
O3 0.0475 (7) 0.0306 (6) 0.0229 (6) 0.0056 (5) 0.0190 (5) 0.0040 (5)
C1 0.0297 (8) 0.0290 (9) 0.0234 (8) 0.0004 (7) 0.0114 (7) −0.0011 (7)
C2 0.0313 (9) 0.0301 (9) 0.0207 (8) 0.0008 (7) 0.0109 (7) −0.0010 (7)
C3 0.0479 (11) 0.0357 (10) 0.0230 (9) 0.0020 (8) 0.0156 (8) 0.0016 (7)
C4 0.0682 (14) 0.0303 (10) 0.0339 (10) 0.0057 (9) 0.0229 (10) 0.0069 (8)
C5 0.0647 (14) 0.0268 (10) 0.0370 (11) 0.0057 (9) 0.0222 (10) −0.0012 (8)
C6 0.0309 (9) 0.0317 (9) 0.0220 (8) −0.0007 (7) 0.0127 (7) −0.0021 (7)
C7 0.0415 (10) 0.0335 (10) 0.0335 (10) −0.0003 (8) 0.0134 (8) 0.0034 (8)
C8 0.0371 (10) 0.0394 (11) 0.0419 (11) 0.0031 (8) 0.0108 (8) 0.0026 (8)
C9 0.0393 (11) 0.0432 (11) 0.0589 (13) −0.0039 (9) 0.0233 (10) −0.0059 (10)

Geometric parameters (Å, °)

Ni—O1i 2.0422 (12) O2—C6 1.2573 (19)
Ni—O1 2.0422 (12) O3—C1 1.260 (2)
Ni—O3i 2.1059 (12) C1—C2 1.441 (2)
Ni—O3 2.1058 (12) C2—C3 1.369 (2)
Ni—N2 2.0610 (14) C2—C6 1.504 (2)
Ni—N2i 2.0610 (14) C3—C4 1.401 (3)
N1—C5 1.356 (2) C3—H3A 0.9300
N1—C1 1.369 (2) C4—C5 1.350 (3)
N1—H1 0.8600 C4—H4 0.9300
N2—C7 1.316 (2) C5—H5 0.9300
N2—C8 1.373 (2) C7—H7 0.9300
N3—C7 1.337 (2) C8—C9 1.352 (3)
N3—C9 1.361 (3) C8—H8 0.9300
N3—H3 0.8600 C9—H9 0.9300
O1—C6 1.250 (2)
O1i—Ni—O1 178.80 (6) O3—C1—C2 127.05 (15)
O1i—Ni—N2 86.55 (5) N1—C1—C2 115.33 (14)
O1—Ni—N2 92.62 (5) C3—C2—C1 119.31 (15)
O1i—Ni—N2i 92.62 (5) C3—C2—C6 120.19 (14)
O1—Ni—N2i 86.55 (5) C1—C2—C6 120.47 (14)
N2—Ni—N2i 93.29 (8) C2—C3—C4 122.08 (16)
O1i—Ni—O3i 84.52 (5) C2—C3—H3A 119.0
O1—Ni—O3i 96.37 (5) C4—C3—H3A 119.0
N2—Ni—O3i 170.03 (5) C5—C4—C3 118.07 (17)
N2i—Ni—O3i 91.53 (5) C5—C4—H4 121.0
O1i—Ni—O3 96.37 (5) C3—C4—H4 121.0
O1—Ni—O3 84.52 (5) C4—C5—N1 120.47 (17)
N2—Ni—O3 91.53 (5) C4—C5—H5 119.8
N2i—Ni—O3 170.03 (5) N1—C5—H5 119.8
O3i—Ni—O3 85.08 (7) O1—C6—O2 122.70 (15)
C5—N1—C1 124.68 (15) O1—C6—C2 120.28 (14)
C5—N1—H1 117.7 O2—C6—C2 117.02 (15)
C1—N1—H1 117.7 N2—C7—N3 111.32 (17)
C7—N2—C8 105.36 (15) N2—C7—H7 124.3
C7—N2—Ni 123.21 (12) N3—C7—H7 124.3
C8—N2—Ni 131.20 (12) C9—C8—N2 109.68 (17)
C7—N3—C9 107.57 (16) C9—C8—H8 125.2
C7—N3—H3 126.2 N2—C8—H8 125.2
C9—N3—H3 126.2 C8—C9—N3 106.06 (17)
C6—O1—Ni 129.67 (11) C8—C9—H9 127.0
C1—O3—Ni 117.96 (10) N3—C9—H9 127.0
O3—C1—N1 117.62 (14)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2ii 0.86 1.93 2.7848 (19) 177
N3—H3···O2iii 0.86 2.03 2.796 (2) 148
C3—H3A···O3iv 0.93 2.41 3.323 (2) 167

Symmetry codes: (ii) x, −y, z−1/2; (iii) x, −y+1, z−1/2; (iv) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2499).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Deisenhofer, J. & Michel, H. (1989). EMBO J.8, 2149–2170. [DOI] [PMC free article] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. [DOI] [PubMed]
  7. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wen, D.-C. & Liu, S.-X. (2007). Chin. J. Struct. Chem.26, 1281–1284.
  11. Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. [DOI] [PubMed]
  12. Yan, H.-Y. & Hu, T.-Q. (2007a). Acta Cryst. E63, m2325.
  13. Yan, H.-Y. & Hu, T.-Q. (2007b). Acta Cryst. E63, m2326.
  14. Yao, Y., Cai, Q., Kou, H., Li, H., Wang, D., Yu, R., Chen, Y. & Xing, X. (2004). Chem. Lett.33, 1270–1271.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028347/tk2499sup1.cif

e-65-0m977-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028347/tk2499Isup2.hkl

e-65-0m977-Isup2.hkl (93.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES