Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 4;65(Pt 8):o1777–o1778. doi: 10.1107/S1600536809025124

3-Hydr­oxy-3a,6,8c-trimethyl­perhydro­oxireno[2′,3′:7,8]naphtho[1,2-b]furan-7(2H)-one

Victor Kesternich a, Paulina Cortés a, Iván Brito b,*, Alejandro Cárdenas c, Matías López-Rodríguez d
PMCID: PMC2977239  PMID: 21583485

Abstract

The title compound, C15H22O4, consists of two trans-fused six-membered rings and a trans-fused five-membered γ-lactone. The ep­oxy and hydroxyl groups are α-oriented. The cyclo­hexane rings adopt half-chair and chair conformations and the lactone ring is in an envelope conformation. The mol­ecular structure is stabilized by one O—H⋯O and three C—H⋯O intra­molecular hydrogen bonds.

Related literature

For background to sesquiterpene lactones, see: Fraga (2008). For their biological activity, see: Pillay et al. (2007); Ohno et al. (2005); Lindenmeyer et al. (2006). For synthetic details, see: Villar et al. (1983); González, et al. (1982). For a related structure, see: Rychlewska et al. (1982). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-65-o1777-scheme1.jpg

Experimental

Crystal data

  • C15H22O4

  • M r = 266.33

  • Monoclinic, Inline graphic

  • a = 8.251 (3) Å

  • b = 7.239 (2) Å

  • c = 11.434 (2) Å

  • β = 94.201 (5)°

  • V = 681.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.20 × 0.09 × 0.08 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 6696 measured reflections

  • 1601 independent reflections

  • 1495 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.108

  • S = 1.13

  • 1601 reflections

  • 179 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025124/pv2169sup1.cif

e-65-o1777-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025124/pv2169Isup2.hkl

e-65-o1777-Isup2.hkl (77.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.79 (4) 2.27 (4) 2.952 (3) 146 (5)
C9—H9A⋯O4 0.97 2.55 2.958 (3) 105
C5—H5⋯O4 0.98 2.57 2.925 (3) 101
C15—H15C⋯O2 0.96 2.53 2.913 (3) 104

Acknowledgments

IB thanks the Spanish Research Council (CSIC) for providing a free-of-charge licence for the CSD system.

supplementary crystallographic information

Comment

Sesquiterpene lactones constitute a large group of natural products (Fraga, 2008). The eudesmanolides are natural products belong to the sesquiterpene lactones composed of fifteen carbon atoms. Many of these compounds, natural or synthetics, are of particular interest because of their biological activity (Pillay, et al., 2007; Ohno, et al., 2005; Lindenmeyer, et al., 2006). We report in this article the synthesis and crystal structure of a novel eudesmanolide, the title compound, (I).

The structure of the title compound (Fig. 1) is stabilized by one O—H···O and three C—H···O intramolecular hydrogen bonds (Table 1). The structure of (I) consists of two trans-fused [C(5)—C(10)] six-membered rings and a trans-fused [at C(6)—C(7)] five-membered γ-lactone. The epoxy and hidroxyl group are α -oriented. The cyclohexane rings adopt half-chair [C1/C2/C3/C4/C5/C10] and chair [C5/C6/C7/C8/C9/C10] and the lactone ring is in an envelope conformation respectively, as shown by the Cremer & Pople (1975) puckering parameters [QT=0.525 (2) Å, θ =46.9 (2)°, φ=321.1 (4)°; QT=0.616 (2) Å, θ =8.81 (2)°, φ=56.3 (1)°; q2=0.382 (2) Å, φ2=244.5 (3)°, respectively].

The crystal structure of the title compound is isomorphous with erivanin (Rychlewska et al., 1982).

Experimental

The title compound (I) was prepared by epoxidation of 1 with monoperoxyphthalic acid magnesium (MMPPA) at room temperature as shown in Fig. 2. In turn the product 1 was obtained by reduction of desoxyvulgarina(1-oxo-6β,7α,11β-H-eudesm-4-en-6,12-olide) (Villar et al., 1983), with sodium borohydride in ethanol (González, et al., 1982). Recrystallization from hexane/athyl acetate (3:1) at room temperature afforded colourless crystals suitable for X-ray diffraction analysis.

Refinement

Due to lack of sufficient anomalous dospersion effects, an absolute structure was not established. Therefore, Friedel pairs (634) were merged. The hydroxyl H4 atom was located in Fourier difference maps and refined isotropically. All other H atoms were positioned geometrically and treated as riding with C—H = 0.98 Å for CH, 0.97 Å (CH2) or 0.96 Å (CH3) with Uiso(H) = 1.2 Ueq (C) (for CH, CH2) or Uiso(H) = 1.5Ueq(C) (for CH3).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Preparation of the title compound.

Crystal data

C15H22O4 F(000) = 288
Mr = 266.33 Dx = 1.299 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2yb Cell parameters from 1601 reflections
a = 8.251 (3) Å θ = 2.4–27.1°
b = 7.239 (2) Å µ = 0.09 mm1
c = 11.434 (2) Å T = 292 K
β = 94.201 (5)° Block, colourless
V = 681.1 (3) Å3 0.20 × 0.09 × 0.08 mm
Z = 2

Data collection

Nonius KappaCCD area-detector diffractometer 1495 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.042
graphite θmax = 27.1°, θmin = 2.5°
φ scans, and ω scans with κ offsets h = −8→10
6696 measured reflections k = −9→9
1601 independent reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.0443P] where P = (Fo2 + 2Fc2)/3
1601 reflections (Δ/σ)max < 0.001
179 parameters Δρmax = 0.17 e Å3
1 restraint Δρmin = −0.15 e Å3

Special details

Experimental. Melting points were determined on a Kofler-type apparatus and are uncorrected. The IR spectra were recorded on a Perkin-Elmer Spectrum BX spectrophotometer with KBr as support. The 1H-NMR spectra were obtained with a Brüker Advance DPX-400 at 400 MHz. The MS spectra were recorded on a VG AUTOSPEC FISON instrument. In the purification of the intermediates and final product column chromatography was carried out using Merck silica gel 0.065–0.2 mm. Melting point 473–475 K. IR cm-1: 3529 (O—H), 1769 (γ-lactone). 1H-NMR, δ (CDCl3): 3.96 (1H, dd, J=9.7 and 8.5 Hz, H6), 3.21 (1H, bs, H1), 3.03 (1H, bs, H3), 1.49 (3H, s, H15), 1.24 (3H, d, J= 6.8 Hz, H13), 1.21 (3H, s, H14). MS (m/z): 266.15 (M+, C15H22O4), 248.14 (M+– H2O).
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6128 (2) 0.3084 (3) 0.41480 (13) 0.0546 (5)
O2 0.51059 (16) 0.2973 (2) 0.58981 (11) 0.0384 (4)
O3 0.4263 (2) 0.0404 (3) 0.90667 (14) 0.0489 (4)
O4 0.0735 (3) −0.0003 (3) 0.84929 (18) 0.0662 (6)
H4 0.164 (5) −0.035 (7) 0.855 (4) 0.093 (15)*
C1 0.0892 (3) 0.1905 (4) 0.8793 (2) 0.0509 (6)
H1 −0.0187 0.2346 0.8966 0.061*
C2 0.2005 (3) 0.2157 (5) 0.98982 (19) 0.0541 (6)
H2A 0.179 0.3351 1.024 0.065*
H2B 0.176 0.1214 1.0462 0.065*
C3 0.3763 (3) 0.2043 (4) 0.96754 (17) 0.0445 (5)
H3 0.4521 0.2468 1.0319 0.053*
C4 0.4356 (2) 0.2197 (3) 0.84932 (16) 0.0356 (4)
C5 0.3118 (2) 0.2328 (3) 0.74257 (15) 0.0303 (4)
H5 0.2925 0.1061 0.7149 0.036*
C6 0.3554 (2) 0.3442 (3) 0.63683 (15) 0.0316 (4)
H6 0.3543 0.4761 0.6561 0.038*
C7 0.2322 (2) 0.3066 (3) 0.53335 (16) 0.0364 (4)
H7 0.2211 0.1723 0.5256 0.044*
C8 0.0672 (3) 0.3830 (4) 0.55853 (19) 0.0475 (6)
H8A −0.0119 0.3553 0.4939 0.057*
H8B 0.0733 0.516 0.5679 0.057*
C9 0.0161 (2) 0.2934 (4) 0.67131 (19) 0.0490 (6)
H9A −0.0068 0.1639 0.6561 0.059*
H9B −0.0837 0.351 0.6926 0.059*
C10 0.1444 (2) 0.3084 (3) 0.77649 (17) 0.0385 (5)
C11 0.3227 (3) 0.3750 (3) 0.43019 (17) 0.0395 (5)
H11 0.3129 0.5097 0.4256 0.047*
C12 0.4968 (3) 0.3260 (3) 0.47164 (16) 0.0382 (4)
C13 0.2728 (4) 0.2936 (5) 0.31047 (19) 0.0603 (7)
H13A 0.3448 0.3376 0.2544 0.09*
H13B 0.1635 0.3305 0.2868 0.09*
H13C 0.2785 0.1613 0.3146 0.09*
C14 0.1588 (3) 0.5107 (4) 0.8180 (2) 0.0560 (6)
H14A 0.0679 0.5408 0.8623 0.084*
H14B 0.1595 0.5908 0.7512 0.084*
H14C 0.2578 0.5264 0.8665 0.084*
C15 0.6070 (3) 0.2836 (5) 0.83987 (19) 0.0543 (7)
H15A 0.6664 0.273 0.915 0.081*
H15B 0.6066 0.4102 0.8148 0.081*
H15C 0.6578 0.2086 0.7838 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0602 (10) 0.0587 (10) 0.0481 (8) 0.0041 (9) 0.0264 (7) 0.0041 (9)
O2 0.0331 (6) 0.0470 (8) 0.0366 (7) 0.0030 (7) 0.0118 (5) 0.0026 (7)
O3 0.0554 (9) 0.0485 (10) 0.0431 (8) 0.0042 (8) 0.0058 (6) 0.0103 (7)
O4 0.0588 (12) 0.0673 (13) 0.0729 (13) −0.0278 (11) 0.0077 (9) 0.0140 (11)
C1 0.0335 (10) 0.0708 (18) 0.0504 (12) −0.0031 (12) 0.0166 (9) 0.0062 (12)
C2 0.0484 (12) 0.0761 (18) 0.0400 (10) −0.0032 (14) 0.0186 (9) 0.0033 (12)
C3 0.0437 (11) 0.0569 (15) 0.0332 (9) −0.0071 (11) 0.0051 (8) 0.0002 (10)
C4 0.0323 (9) 0.0401 (11) 0.0350 (9) 0.0002 (9) 0.0069 (7) 0.0001 (9)
C5 0.0261 (8) 0.0312 (9) 0.0342 (9) −0.0001 (8) 0.0076 (6) −0.0023 (8)
C6 0.0293 (8) 0.0328 (10) 0.0336 (9) 0.0012 (8) 0.0080 (7) −0.0007 (7)
C7 0.0381 (10) 0.0341 (10) 0.0374 (9) 0.0014 (9) 0.0042 (7) 0.0025 (9)
C8 0.0364 (10) 0.0569 (15) 0.0489 (11) 0.0073 (10) −0.0006 (8) 0.0046 (11)
C9 0.0271 (8) 0.0639 (15) 0.0565 (12) 0.0041 (10) 0.0061 (8) 0.0066 (12)
C10 0.0286 (8) 0.0460 (12) 0.0422 (9) 0.0023 (9) 0.0112 (7) 0.0010 (10)
C11 0.0495 (11) 0.0351 (10) 0.0341 (9) −0.0003 (9) 0.0052 (8) 0.0014 (8)
C12 0.0457 (10) 0.0329 (10) 0.0374 (10) −0.0004 (9) 0.0127 (8) 0.0014 (8)
C13 0.0753 (16) 0.0665 (17) 0.0382 (11) 0.0005 (15) −0.0017 (10) −0.0045 (13)
C14 0.0557 (14) 0.0527 (15) 0.0622 (15) 0.0166 (12) 0.0215 (11) −0.0093 (12)
C15 0.0320 (9) 0.089 (2) 0.0418 (10) −0.0093 (12) 0.0040 (8) 0.0017 (13)

Geometric parameters (Å, °)

O1—C12 1.202 (2) C7—C8 1.516 (3)
O2—C12 1.364 (2) C7—C11 1.524 (3)
O2—C6 1.464 (2) C7—H7 0.98
O3—C3 1.451 (3) C8—C9 1.530 (3)
O3—C4 1.459 (3) C8—H8A 0.97
O4—C1 1.427 (4) C8—H8B 0.97
O4—H4 0.78 (4) C9—C10 1.547 (3)
C1—C2 1.517 (3) C9—H9A 0.97
C1—C10 1.548 (3) C9—H9B 0.97
C1—H1 0.98 C10—C14 1.541 (4)
C2—C3 1.493 (3) C11—C13 1.519 (3)
C2—H2A 0.97 C11—C12 1.521 (3)
C2—H2B 0.97 C11—H11 0.98
C3—C4 1.475 (3) C13—H13A 0.96
C3—H3 0.98 C13—H13B 0.96
C4—C15 1.500 (3) C13—H13C 0.96
C4—C5 1.536 (3) C14—H14A 0.96
C5—C6 1.518 (2) C14—H14B 0.96
C5—C10 1.561 (2) C14—H14C 0.96
C5—H5 0.98 C15—H15A 0.96
C6—C7 1.527 (3) C15—H15B 0.96
C6—H6 0.98 C15—H15C 0.96
C12—O2—C6 108.47 (14) C7—C8—C9 108.19 (19)
C3—O3—C4 60.93 (13) C7—C8—H8A 110.1
C1—O4—H4 103 (4) C9—C8—H8A 110.1
O4—C1—C2 110.8 (2) C7—C8—H8B 110.1
O4—C1—C10 112.2 (2) C9—C8—H8B 110.1
C2—C1—C10 111.9 (2) H8A—C8—H8B 108.4
O4—C1—H1 107.2 C8—C9—C10 114.25 (18)
C2—C1—H1 107.2 C8—C9—H9A 108.7
C10—C1—H1 107.2 C10—C9—H9A 108.7
C3—C2—C1 112.77 (17) C8—C9—H9B 108.7
C3—C2—H2A 109 C10—C9—H9B 108.7
C1—C2—H2A 109 H9A—C9—H9B 107.6
C3—C2—H2B 109 C14—C10—C9 109.8 (2)
C1—C2—H2B 109 C14—C10—C1 108.05 (19)
H2A—C2—H2B 107.8 C9—C10—C1 109.22 (19)
O3—C3—C4 59.79 (13) C14—C10—C5 111.13 (18)
O3—C3—C2 116.2 (2) C9—C10—C5 110.48 (16)
C4—C3—C2 122.93 (18) C1—C10—C5 108.08 (18)
O3—C3—H3 115.4 C13—C11—C12 112.21 (19)
C4—C3—H3 115.4 C13—C11—C7 117.1 (2)
C2—C3—H3 115.4 C12—C11—C7 100.87 (15)
O3—C4—C3 59.28 (14) C13—C11—H11 108.7
O3—C4—C15 112.81 (18) C12—C11—H11 108.7
C3—C4—C15 117.85 (17) C7—C11—H11 108.7
O3—C4—C5 111.03 (17) O1—C12—O2 120.52 (19)
C3—C4—C5 119.16 (16) O1—C12—C11 128.83 (18)
C15—C4—C5 119.95 (17) O2—C12—C11 110.63 (15)
C6—C5—C4 118.90 (15) C11—C13—H13A 109.5
C6—C5—C10 106.09 (15) C11—C13—H13B 109.5
C4—C5—C10 111.90 (15) H13A—C13—H13B 109.5
C6—C5—H5 106.4 C11—C13—H13C 109.5
C4—C5—H5 106.4 H13A—C13—H13C 109.5
C10—C5—H5 106.4 H13B—C13—H13C 109.5
O2—C6—C5 115.68 (15) C10—C14—H14A 109.5
O2—C6—C7 102.98 (14) C10—C14—H14B 109.5
C5—C6—C7 109.82 (16) H14A—C14—H14B 109.5
O2—C6—H6 109.4 C10—C14—H14C 109.5
C5—C6—H6 109.4 H14A—C14—H14C 109.5
C7—C6—H6 109.4 H14B—C14—H14C 109.5
C8—C7—C11 121.77 (19) C4—C15—H15A 109.5
C8—C7—C6 110.13 (17) C4—C15—H15B 109.5
C11—C7—C6 101.85 (16) H15A—C15—H15B 109.5
C8—C7—H7 107.4 C4—C15—H15C 109.5
C11—C7—H7 107.4 H15A—C15—H15C 109.5
C6—C7—H7 107.4 H15B—C15—H15C 109.5
O4—C1—C2—C3 79.3 (3) C11—C7—C8—C9 −176.7 (2)
C10—C1—C2—C3 −46.7 (3) C6—C7—C8—C9 −57.7 (3)
C4—O3—C3—C2 114.5 (2) C7—C8—C9—C10 52.5 (3)
C1—C2—C3—O3 −53.5 (3) C8—C9—C10—C14 69.4 (3)
C1—C2—C3—C4 16.1 (4) C8—C9—C10—C1 −172.3 (2)
C3—O3—C4—C15 109.9 (2) C8—C9—C10—C5 −53.5 (3)
C3—O3—C4—C5 −112.26 (18) O4—C1—C10—C14 −179.6 (2)
C2—C3—C4—O3 −103.4 (3) C2—C1—C10—C14 −54.3 (3)
O3—C3—C4—C15 −101.3 (2) O4—C1—C10—C9 61.0 (3)
C2—C3—C4—C15 155.3 (3) C2—C1—C10—C9 −173.8 (2)
O3—C3—C4—C5 98.4 (2) O4—C1—C10—C5 −59.3 (2)
C2—C3—C4—C5 −4.9 (4) C2—C1—C10—C5 66.0 (3)
O3—C4—C5—C6 −146.38 (16) C6—C5—C10—C14 −65.2 (2)
C3—C4—C5—C6 148.0 (2) C4—C5—C10—C14 66.0 (2)
C15—C4—C5—C6 −11.9 (3) C6—C5—C10—C9 57.0 (2)
O3—C4—C5—C10 89.3 (2) C4—C5—C10—C9 −171.85 (19)
C3—C4—C5—C10 23.7 (3) C6—C5—C10—C1 176.44 (18)
C15—C4—C5—C10 −136.2 (2) C4—C5—C10—C1 −52.4 (2)
C12—O2—C6—C5 148.07 (17) C8—C7—C11—C13 −81.2 (3)
C12—O2—C6—C7 28.3 (2) C6—C7—C11—C13 155.8 (2)
C4—C5—C6—O2 52.5 (2) C8—C7—C11—C12 156.7 (2)
C10—C5—C6—O2 179.57 (16) C6—C7—C11—C12 33.8 (2)
C4—C5—C6—C7 168.51 (17) C6—O2—C12—O1 175.0 (2)
C10—C5—C6—C7 −64.4 (2) C6—O2—C12—C11 −6.3 (2)
O2—C6—C7—C8 −169.05 (17) C13—C11—C12—O1 34.9 (4)
C5—C6—C7—C8 67.2 (2) C7—C11—C12—O1 160.3 (3)
O2—C6—C7—C11 −38.5 (2) C13—C11—C12—O2 −143.7 (2)
C5—C6—C7—C11 −162.29 (16) C7—C11—C12—O2 −18.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···O3 0.79 (4) 2.27 (4) 2.952 (3) 146 (5)
C9—H9A···O4 0.97 2.55 2.958 (3) 105
C5—H5···O4 0.98 2.57 2.925 (3) 101
C15—H15C···O2 0.96 2.53 2.913 (3) 104

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2169).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Fraga, B. M. (2008). J. Nat. Prod. Rep.25, 1180–1209. [DOI] [PubMed]
  6. González, A. G., Galindo, A., Mansilla, H. & Gutierrez, A. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 881–884.
  7. Lindenmeyer, M. T., Hrenn, A., Kern, C., Castro, V., Murillo, R., Müller, S., Laufer, S., Schulte-Mönting, J., Siedle, B. & Merfort, I. (2006). Bioorg. Med. Chem.14, 2487–2497. [DOI] [PubMed]
  8. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  9. Ohno, T., Nagatsu, A., Nakagawa, M., Inoue, M., Li, Y., Minatoguchi, S., Mizukami, H. & Fujiwara, H. (2005). Tetrahedron Lett.46, 8657–8660.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Pillay, P., Vlegaar, R., Maharaj, V. J., Smith, P. J. & Lategan, C. A. (2007). J. Ethnopharmacol.112, 71–76. [DOI] [PubMed]
  12. Rychlewska, U., Holub, M., Bloszyk, E. & Drozdz, B. (1982). Collect. Czech. Chem. Commun.47, 88–95.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Villar, A., Zafra-Polo, M. C., Nicoletti, M. & Galeffi, C. (1983). Phytochemistry, 22, 777–778.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025124/pv2169sup1.cif

e-65-o1777-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025124/pv2169Isup2.hkl

e-65-o1777-Isup2.hkl (77.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES