Abstract
Three classes of mutants of Arabidopsis thaliana (L.) Heynhold with alterations in starch metabolism were found to have higher levels of leaf amylase activity than the wild type when grown in a 12-hr photoperiod. This effect was dependent upon the developmental stage of the plants and was largely suppressed during growth in continuous light. The various amylolytic activities in crude extracts were separated by electrophoresis in nondenaturing polyacrylamide gels and visualized by activity staining. The increased amylase activity in the mutants was due to an up to 40-fold increase in the activity of an extrachloroplast β-amylase (EC 3.2.1.2). These observations indicate the existence of a regulatory mechanism that controls the amount of β-amylase activity in response to fluctuations in photosynthetic carbohydrate metabolism. It is paradoxical that β-amylase appears to be a highly regulated enzyme, but as yet no physiologically relevant function can be assigned to this enzyme due to the absence of starch in the cytoplasmic compartment of leaf cells.
Keywords: phosphoglucomutase, ADPglucose pyrophosphorylase, photosynthesis, photosynthetic CO2 fixation
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azcón-Bieto J., Lambers H., Day D. A. Effect of photosynthesis and carbohydrate status on respiratory rates and the involvement of the alternative pathway in leaf respiration. Plant Physiol. 1983 Jul;72(3):598–603. doi: 10.1104/pp.72.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huber S. C. Biochemical basis for effects of k-deficiency on assimilate export rate and accumulation of soluble sugars in soybean leaves. Plant Physiol. 1984 Oct;76(2):424–430. doi: 10.1104/pp.76.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin T. P., Caspar T., Somerville C. R., Preiss J. A Starch Deficient Mutant of Arabidopsis thaliana with Low ADPglucose Pyrophosphorylase Activity Lacks One of the Two Subunits of the Enzyme. Plant Physiol. 1988 Dec;88(4):1175–1181. doi: 10.1104/pp.88.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin T. P., Caspar T., Somerville C., Preiss J. Isolation and Characterization of a Starchless Mutant of Arabidopsis thaliana (L.) Heynh Lacking ADPglucose Pyrophosphorylase Activity. Plant Physiol. 1988 Apr;86(4):1131–1135. doi: 10.1104/pp.86.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin T. P., Spilatro S. R., Preiss J. Subcellular localization and characterization of amylases in Arabidopsis leaf. Plant Physiol. 1988 Jan;86(1):251–259. doi: 10.1104/pp.86.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pongratz P., Beck E. Diurnal oscillation of amylolytic activity in spinach chloroplasts. Plant Physiol. 1978 Nov;62(5):687–689. doi: 10.1104/pp.62.5.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somerville C. R., Portis A. R., Ogren W. L. A Mutant of Arabidopsis thaliana Which Lacks Activation of RuBP Carboxylase In Vivo. Plant Physiol. 1982 Aug;70(2):381–387. doi: 10.1104/pp.70.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]


