Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 29;65(Pt 8):o2030–o2031. doi: 10.1107/S1600536809029572

N-[2-(6-Methyl-4-oxo-4H-chromen-3-yl)-4-oxothia­zolidin-3-yl]furan-2-carbox­amide N,N-dimethyl­formamide solvate

Pei-Liang Zhao a, Zhong-Zhen Zhou a,*
PMCID: PMC2977248  PMID: 21583697

Abstract

The title mol­ecule, C18H14N2O5S·C3H7NO, comprises of a carboxamide group bonded to a furan ring and a distorted envelope-shaped 4-oxothia­zolidin-3-yl group which is connected to a substituted 6-methyl-4-oxo-4H-chromen-3-yl group. Extensive strong N—H⋯O and weak C—H⋯O inter­molecular hydrogen-bonding inter­actions occur between dimethyl­formamide (DMF), the crystallizing solvent, and the various heterocyclic groups within the compound, as well as additional weak C—H⋯O inter­actions between the heterocyclic groups themselves. The carboxyl group of the DMF solvent mol­ecule forms a trifurcated (four-center) acceptor hydrogen-bond inter­action with the carboxamide, furan and 6-methyl-4-oxo-4H-chromen-3-yl groups. The dihedral angles between the planar chromone group [maximum deviation = 0.0377 (18)°] and those of the furan and 4-oxothia­zolidin-3-yl groups are 89.4 (6) and 78.5 (1)°, respectively.

Related literature

For related structures, see: Zhou et al. (2005). For the preparation of the title compound, see: Zhou et al. (2008). For general background to glycoluril and its derivatives, see: Maliar et al. (2004), Zhou et al. (2007). For puckering parameters, see: Cremer & Pople (1975). graphic file with name e-65-o2030-scheme1.jpg

Experimental

Crystal data

  • C18H14N2O5S·C3H7NO

  • M r = 443.48

  • Triclinic, Inline graphic

  • a = 8.4141 (1) Å

  • b = 11.5676 (14) Å

  • c = 11.8382 (14) Å

  • α = 87.138 (1)°

  • β = 70.503 (2)°

  • γ = 78.419 (2)°

  • V = 1063.86 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 292 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T min = 0.934, T max = 0.962

  • 7900 measured reflections

  • 4568 independent reflections

  • 3163 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.130

  • S = 0.96

  • 4568 reflections

  • 289 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029572/jj2002sup1.cif

e-65-o2030-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029572/jj2002Isup2.hkl

e-65-o2030-Isup2.hkl (223.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O6 0.77 (2) 2.10 (2) 2.856 (2) 169 (2)
C4—H4⋯O6i 0.93 2.50 3.421 (3) 172
C10—H10⋯O4ii 0.93 2.49 3.332 (2) 151
C11—H11⋯O5ii 0.98 2.50 3.267 (2) 135 (1)
C13—H13B⋯O3iii 0.97 2.55 3.441 (2) 153
C16—H16⋯O6 0.93 2.36 3.193 (3) 150
C18—H18⋯O3iv 0.93 2.47 3.342 (3) 157
C20—H20C⋯O1v 0.96 2.46 3.361 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank Professor Guang-Fu Yang for technical assistance and Dr Meng Xiang-Gao for the data collection. The authors acknowledge financial support from the National Natural Science Foundation of Hubei Province (grant No. 7300452) and the Medical Research Fundation of Science and Technology of Guangdong Province (grant No. B2008103)

supplementary crystallographic information

Comment

The tri-substituted chromone (1,4-benzopyrone) pharmacophore is an important structural element in medicinal chemistry, and shows a broad spectrum of pharmacological activities (Maliar et al. (2004), Zhou et al. (2007)). Hence, we were curious to explore the family of biheterocyclic compounds that contain both the thiazolidinone and chromone pharmacophores, with a view to discovering novel lead structures for the development of antifungal agents.

The title molecule is comprised of a carboxamide group bonded to a furan ring and a distorted envelope shaped (Cremer & Pople, 1975) 4-oxothiazolidin-3-yl group (Q(2) = 0.1878 (18) Å, Phi(2) = 188.3 (6)°; for an ideal envelope Phi(2) = k x 36) which is connected to a substituted 6-methyl-4-oxo-4H-chromen-3-yl group (Fig. 1). Extensive strong N2—H2···O6 and weak C16—H16···O6, C20—H20···O6, hydrogen bonding intermolecular interactions occur between dimethylformamide (DMF), the crystallizing solvent, and the various heterocyclic groups within the compound as well as additional weak C—H···O interactions between the heterocyclic groups themselves (Table 1, Fig. 2). The carboxyl group of the DMF solvent forms a trifurcated (4-center) acceptor hydrogen bond interaction with the carboxamide, furan and 6-methyl-4-oxo-4H-chromen-3-yl groups. The dihedral angle between the planar chromone group (max deviation = 0.0377 (18)°) and that of the furan and 4-oxothiazolidin-3-yl groups is 89.4 (6)° and 78.5 (1)°, respectively. Crystal packing is also stabilized by π-π stacking interactions (Cg2—Cg2 = 3.8378 (14) Å; 1 - x, 2 - y, 1 - z; Cg2 is the centroid of the O5/C15—C18 ring).

Experimental

The title compound was synthesized according to the procedure reported (Zhou et al., 2008). Crystals appropriate for X-ray data collection were obtained by slow evaporation of the DMF solution at 293 K.

Refinement

All H atoms were initially located in a difference Fourier map. The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.96 Å, and Uiso(H) = 1.49–1.50 UeqC. Each group was allowed to rotate freely about its C–C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H = 0.93–0.98 Å, N–H = 0.77Å and Uiso(H) = 1.19–1.20Ueq(C,N).)

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title molecule with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. Hydrogen bonds are drawn as dashed lines.

Fig. 2.

Fig. 2.

The packing of the title molecule, showing one layer of molecules connected by strong N—H···O, and weak C—H···O intermolecular hydrogen bonds, and weak π-π stacking interactions.

Crystal data

C18H14N2O5S·C3H7NO Z = 2
Mr = 443.48 F(000) = 464
Triclinic, P1 Dx = 1.384 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.4141 (1) Å Cell parameters from 2421 reflections
b = 11.5676 (14) Å θ = 2.5–26.7°
c = 11.8382 (14) Å µ = 0.20 mm1
α = 87.138 (1)° T = 292 K
β = 70.503 (2)° Block, colorless
γ = 78.419 (2)° 0.30 × 0.20 × 0.20 mm
V = 1063.86 (18) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 4568 independent reflections
Radiation source: fine-focus sealed tube 3163 reflections with I > 2σ(I)
graphite Rint = 0.043
φ and ω scans θmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −10→10
Tmin = 0.934, Tmax = 0.962 k = −13→14
7900 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0676P)2] where P = (Fo2 + 2Fc2)/3
4568 reflections (Δ/σ)max < 0.001
289 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2135 (3) 0.19985 (18) 0.1714 (2) 0.0722 (7)
H1A 0.1411 0.1794 0.1309 0.108*
H1B 0.2338 0.1381 0.2251 0.108*
H1C 0.3210 0.2097 0.1135 0.108*
C2 0.1263 (3) 0.31350 (16) 0.24164 (17) 0.0519 (5)
C3 −0.0211 (3) 0.31675 (18) 0.34263 (19) 0.0580 (6)
H3 −0.0598 0.2469 0.3680 0.070*
C4 −0.1099 (3) 0.41904 (17) 0.40512 (18) 0.0542 (5)
H4 −0.2082 0.4192 0.4713 0.065*
C5 −0.0502 (2) 0.52272 (16) 0.36769 (16) 0.0445 (4)
C6 0.0963 (2) 0.52416 (15) 0.26977 (15) 0.0420 (4)
C7 0.1832 (3) 0.41704 (16) 0.20822 (16) 0.0484 (5)
H7 0.2825 0.4164 0.1427 0.058*
C8 0.1533 (2) 0.63617 (16) 0.22977 (15) 0.0427 (4)
C9 0.0433 (2) 0.73858 (15) 0.30060 (15) 0.0414 (4)
C10 −0.0936 (2) 0.72643 (16) 0.39626 (16) 0.0467 (5)
H10 −0.1573 0.7941 0.4410 0.056*
C11 0.0758 (2) 0.86128 (16) 0.26908 (16) 0.0443 (4)
H11 −0.005 0.9161 0.3323 0.053*
C12 0.3611 (3) 0.89041 (15) 0.14565 (16) 0.0469 (5)
C13 0.2766 (3) 0.90147 (18) 0.05140 (17) 0.0573 (5)
H13A 0.3236 0.8335 −0.0027 0.069*
H13B 0.2968 0.9719 0.0052 0.069*
C14 0.2690 (2) 0.93551 (16) 0.43651 (15) 0.0415 (4)
C15 0.3436 (2) 0.89915 (16) 0.53174 (15) 0.0430 (4)
C16 0.4445 (3) 0.80082 (19) 0.55371 (19) 0.0593 (5)
H16 0.4843 0.7310 0.5086 0.071*
C17 0.4781 (3) 0.8243 (2) 0.6579 (2) 0.0678 (6)
H17 0.5443 0.7728 0.6952 0.081*
C18 0.3975 (3) 0.9337 (2) 0.69290 (19) 0.0650 (6)
H18 0.3986 0.9716 0.7600 0.078*
C19 0.7238 (4) 0.6242 (3) 0.1424 (3) 0.1048 (10)
H19A 0.6655 0.6544 0.0867 0.157*
H19B 0.8457 0.6078 0.1013 0.157*
H19C 0.6968 0.6818 0.2050 0.157*
C20 0.7468 (4) 0.4095 (3) 0.1255 (3) 0.1092 (11)
H20A 0.7150 0.3444 0.1756 0.164*
H20B 0.8696 0.4012 0.0976 0.164*
H20C 0.7074 0.4105 0.0581 0.164*
C21 0.5459 (3) 0.5218 (2) 0.2970 (2) 0.0710 (6)
H21 0.5136 0.4507 0.3256 0.085*
N1 0.2489 (2) 0.87432 (13) 0.25530 (13) 0.0442 (4)
N2 0.3049 (2) 0.85021 (14) 0.35237 (14) 0.0476 (4)
H2 0.361 (3) 0.7885 (19) 0.351 (2) 0.057*
N3 0.6696 (3) 0.51810 (17) 0.19314 (17) 0.0676 (5)
O1 0.28274 (17) 0.64100 (11) 0.14324 (11) 0.0563 (4)
O2 −0.14547 (16) 0.62410 (11) 0.43227 (11) 0.0507 (3)
O3 0.51047 (19) 0.89574 (13) 0.12709 (12) 0.0630 (4)
O4 0.18311 (18) 1.03252 (11) 0.43361 (11) 0.0534 (4)
O5 0.31260 (18) 0.98314 (12) 0.61700 (12) 0.0576 (4)
O6 0.4692 (2) 0.60997 (13) 0.35973 (14) 0.0764 (5)
S1 0.04994 (8) 0.91011 (5) 0.12526 (5) 0.0628 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.1061 (19) 0.0405 (12) 0.0708 (15) −0.0139 (12) −0.0301 (14) −0.0033 (11)
C2 0.0703 (14) 0.0380 (11) 0.0530 (11) −0.0120 (10) −0.0274 (10) 0.0036 (9)
C3 0.0755 (15) 0.0429 (12) 0.0618 (13) −0.0232 (11) −0.0255 (11) 0.0115 (10)
C4 0.0597 (13) 0.0518 (12) 0.0518 (11) −0.0213 (10) −0.0150 (10) 0.0116 (10)
C5 0.0506 (11) 0.0418 (10) 0.0418 (10) −0.0112 (9) −0.0154 (8) 0.0037 (8)
C6 0.0508 (11) 0.0376 (10) 0.0395 (9) −0.0110 (8) −0.0163 (8) 0.0027 (8)
C7 0.0585 (12) 0.0419 (10) 0.0436 (10) −0.0105 (9) −0.0152 (9) 0.0012 (8)
C8 0.0508 (11) 0.0412 (10) 0.0370 (9) −0.0129 (9) −0.0136 (8) 0.0021 (8)
C9 0.0510 (11) 0.0369 (10) 0.0365 (9) −0.0107 (8) −0.0134 (8) 0.0014 (8)
C10 0.0516 (11) 0.0379 (10) 0.0460 (10) −0.0071 (9) −0.0109 (9) −0.0015 (8)
C11 0.0529 (11) 0.0358 (10) 0.0403 (10) −0.0075 (9) −0.0110 (9) −0.0008 (8)
C12 0.0619 (13) 0.0316 (10) 0.0436 (10) −0.0142 (9) −0.0098 (9) 0.0003 (8)
C13 0.0808 (15) 0.0505 (12) 0.0415 (10) −0.0224 (11) −0.0167 (10) 0.0060 (9)
C14 0.0460 (10) 0.0384 (10) 0.0368 (9) −0.0152 (8) −0.0053 (8) −0.0005 (8)
C15 0.0456 (10) 0.0449 (11) 0.0371 (9) −0.0163 (9) −0.0071 (8) −0.0004 (8)
C16 0.0659 (14) 0.0550 (13) 0.0594 (13) −0.0103 (11) −0.0244 (11) −0.0015 (10)
C17 0.0738 (16) 0.0729 (16) 0.0672 (14) −0.0154 (13) −0.0374 (12) 0.0094 (12)
C18 0.0711 (15) 0.0889 (18) 0.0464 (12) −0.0280 (14) −0.0270 (11) 0.0023 (12)
C19 0.118 (3) 0.101 (2) 0.0788 (19) −0.0156 (19) −0.0172 (18) 0.0177 (17)
C20 0.137 (3) 0.094 (2) 0.0798 (19) 0.016 (2) −0.0315 (19) −0.0293 (17)
C21 0.0858 (18) 0.0557 (15) 0.0702 (16) −0.0094 (13) −0.0262 (14) −0.0010 (12)
N1 0.0563 (10) 0.0408 (9) 0.0377 (8) −0.0143 (7) −0.0156 (7) 0.0006 (7)
N2 0.0655 (11) 0.0351 (9) 0.0426 (8) −0.0052 (8) −0.0206 (8) −0.0017 (7)
N3 0.0767 (13) 0.0657 (12) 0.0566 (11) 0.0029 (10) −0.0263 (10) −0.0027 (10)
O1 0.0622 (9) 0.0481 (8) 0.0469 (7) −0.0175 (7) 0.0017 (7) −0.0035 (6)
O2 0.0532 (8) 0.0426 (8) 0.0469 (7) −0.0117 (6) −0.0030 (6) 0.0020 (6)
O3 0.0613 (10) 0.0649 (10) 0.0587 (9) −0.0208 (8) −0.0099 (7) 0.0031 (7)
O4 0.0688 (9) 0.0368 (7) 0.0531 (8) −0.0047 (7) −0.0206 (7) −0.0056 (6)
O5 0.0661 (9) 0.0616 (9) 0.0465 (7) −0.0110 (7) −0.0197 (7) −0.0101 (7)
O6 0.0965 (13) 0.0516 (9) 0.0663 (10) 0.0032 (9) −0.0167 (9) −0.0069 (8)
S1 0.0733 (4) 0.0633 (4) 0.0590 (3) −0.0192 (3) −0.0307 (3) 0.0198 (3)

Geometric parameters (Å, °)

C1—C2 1.508 (3) C13—S1 1.797 (2)
C1—H1A 0.9600 C13—H13A 0.9700
C1—H1B 0.9600 C13—H13B 0.9700
C1—H1C 0.9600 C14—O4 1.212 (2)
C2—C7 1.370 (2) C14—N2 1.354 (2)
C2—C3 1.401 (3) C14—C15 1.470 (3)
C3—C4 1.367 (3) C15—C16 1.347 (3)
C3—H3 0.9300 C15—O5 1.361 (2)
C4—C5 1.388 (2) C16—C17 1.404 (3)
C4—H4 0.9300 C16—H16 0.9300
C5—O2 1.380 (2) C17—C18 1.325 (3)
C5—C6 1.384 (2) C17—H17 0.9300
C6—C7 1.404 (3) C18—O5 1.363 (2)
C6—C8 1.473 (2) C18—H18 0.9300
C7—H7 0.9300 C19—N3 1.430 (3)
C8—O1 1.230 (2) C19—H19A 0.9600
C8—C9 1.450 (2) C19—H19B 0.9600
C9—C10 1.344 (2) C19—H19C 0.9600
C9—C11 1.504 (2) C20—N3 1.438 (3)
C10—O2 1.344 (2) C20—H20A 0.9600
C10—H10 0.9300 C20—H20B 0.9600
C11—N1 1.448 (2) C20—H20C 0.9600
C11—S1 1.8349 (19) C21—O6 1.224 (3)
C11—H11 0.9800 C21—N3 1.315 (3)
C12—O3 1.216 (2) C21—H21 0.9300
C12—N1 1.356 (2) N1—N2 1.378 (2)
C12—C13 1.498 (3) N2—H2 0.77 (2)
C2—C1—H1A 109.5 C12—C13—H13B 110.1
C2—C1—H1B 109.5 S1—C13—H13B 110.1
H1A—C1—H1B 109.5 H13A—C13—H13B 108.4
C2—C1—H1C 109.5 O4—C14—N2 123.15 (17)
H1A—C1—H1C 109.5 O4—C14—C15 123.24 (16)
H1B—C1—H1C 109.5 N2—C14—C15 113.61 (17)
C7—C2—C3 117.65 (18) C16—C15—O5 109.77 (17)
C7—C2—C1 122.10 (19) C16—C15—C14 134.79 (17)
C3—C2—C1 120.22 (18) O5—C15—C14 115.37 (16)
C4—C3—C2 122.26 (18) C15—C16—C17 106.6 (2)
C4—C3—H3 118.9 C15—C16—H16 126.7
C2—C3—H3 118.9 C17—C16—H16 126.7
C3—C4—C5 118.60 (18) C18—C17—C16 106.9 (2)
C3—C4—H4 120.7 C18—C17—H17 126.5
C5—C4—H4 120.7 C16—C17—H17 126.5
O2—C5—C6 121.90 (15) C17—C18—O5 110.6 (2)
O2—C5—C4 116.58 (16) C17—C18—H18 124.7
C6—C5—C4 121.52 (18) O5—C18—H18 124.7
C5—C6—C7 117.91 (16) N3—C19—H19A 109.5
C5—C6—C8 120.29 (16) N3—C19—H19B 109.5
C7—C6—C8 121.76 (16) H19A—C19—H19B 109.5
C2—C7—C6 122.04 (18) N3—C19—H19C 109.5
C2—C7—H7 119.0 H19A—C19—H19C 109.5
C6—C7—H7 119.0 H19B—C19—H19C 109.5
O1—C8—C9 123.67 (16) N3—C20—H20A 109.5
O1—C8—C6 122.18 (17) N3—C20—H20B 109.5
C9—C8—C6 114.14 (15) H20A—C20—H20B 109.5
C10—C9—C8 120.52 (16) N3—C20—H20C 109.5
C10—C9—C11 117.78 (16) H20A—C20—H20C 109.5
C8—C9—C11 121.69 (15) H20B—C20—H20C 109.5
O2—C10—C9 125.11 (17) O6—C21—N3 126.2 (2)
O2—C10—H10 117.4 O6—C21—H21 116.9
C9—C10—H10 117.4 N3—C21—H21 116.9
N1—C11—C9 113.96 (16) C12—N1—N2 120.45 (16)
N1—C11—S1 103.67 (11) C12—N1—C11 120.75 (16)
C9—C11—S1 113.20 (12) N2—N1—C11 117.91 (14)
N1—C11—H11 109.0 C14—N2—N1 119.57 (15)
C9—C11—H11 109.0 C14—N2—H2 125.4 (17)
S1—C11—H11 109.0 N1—N2—H2 114.9 (17)
O3—C12—N1 124.01 (19) C21—N3—C19 120.1 (2)
O3—C12—C13 124.74 (17) C21—N3—C20 121.3 (2)
N1—C12—C13 111.25 (17) C19—N3—C20 118.6 (2)
C12—C13—S1 108.00 (13) C10—O2—C5 117.98 (14)
C12—C13—H13A 110.1 C15—O5—C18 106.03 (16)
S1—C13—H13A 110.1 C13—S1—C11 93.51 (9)
C7—C2—C3—C4 1.8 (3) N2—C14—C15—C16 2.3 (3)
C1—C2—C3—C4 −176.30 (19) O4—C14—C15—O5 −1.2 (2)
C2—C3—C4—C5 −0.8 (3) N2—C14—C15—O5 178.98 (14)
C3—C4—C5—O2 178.99 (17) O5—C15—C16—C17 0.1 (2)
C3—C4—C5—C6 −0.3 (3) C14—C15—C16—C17 177.0 (2)
O2—C5—C6—C7 −178.88 (16) C15—C16—C17—C18 −0.1 (2)
C4—C5—C6—C7 0.4 (3) C16—C17—C18—O5 0.1 (3)
O2—C5—C6—C8 −1.3 (3) O3—C12—N1—N2 −7.0 (3)
C4—C5—C6—C8 178.01 (17) C13—C12—N1—N2 173.40 (15)
C3—C2—C7—C6 −1.7 (3) O3—C12—N1—C11 −175.98 (17)
C1—C2—C7—C6 176.35 (18) C13—C12—N1—C11 4.4 (2)
C5—C6—C7—C2 0.6 (3) C9—C11—N1—C12 109.33 (18)
C8—C6—C7—C2 −176.91 (17) S1—C11—N1—C12 −14.16 (19)
C5—C6—C8—O1 180.00 (18) C9—C11—N1—N2 −59.9 (2)
C7—C6—C8—O1 −2.5 (3) S1—C11—N1—N2 176.57 (11)
C5—C6—C8—C9 −0.4 (2) O4—C14—N2—N1 2.9 (3)
C7—C6—C8—C9 177.10 (16) C15—C14—N2—N1 −177.28 (14)
O1—C8—C9—C10 −178.07 (19) C12—N1—N2—C14 105.6 (2)
C6—C8—C9—C10 2.3 (3) C11—N1—N2—C14 −85.1 (2)
O1—C8—C9—C11 3.0 (3) O6—C21—N3—C19 −1.2 (4)
C6—C8—C9—C11 −176.62 (16) O6—C21—N3—C20 −178.0 (2)
C8—C9—C10—O2 −2.8 (3) C9—C10—O2—C5 1.0 (3)
C11—C9—C10—O2 176.18 (16) C6—C5—O2—C10 1.1 (3)
C10—C9—C11—N1 127.95 (18) C4—C5—O2—C10 −178.26 (16)
C8—C9—C11—N1 −53.1 (2) C16—C15—O5—C18 −0.1 (2)
C10—C9—C11—S1 −113.90 (17) C14—C15—O5—C18 −177.62 (15)
C8—C9—C11—S1 65.1 (2) C17—C18—O5—C15 0.0 (2)
O3—C12—C13—S1 −171.45 (16) C12—C13—S1—C11 −13.78 (14)
N1—C12—C13—S1 8.17 (19) N1—C11—S1—C13 15.17 (13)
O4—C14—C15—C16 −177.9 (2) C9—C11—S1—C13 −108.82 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O6 0.77 (2) 2.10 (2) 2.856 (2) 169 (2)
C4—H4···O6i 0.93 2.50 3.421 (3) 172
C10—H10···O4ii 0.93 2.49 3.332 (2) 151
C11—H11···O5ii 0.98 2.50 3.267 (2) 135 (1)
C13—H13B···O3iii 0.97 2.55 3.441 (2) 153
C16—H16···O6 0.93 2.36 3.193 (3) 150
C18—H18···O3iv 0.93 2.47 3.342 (3) 157
C20—H20C···O1v 0.96 2.46 3.361 (3) 157

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+2, −z+1; (iii) −x+1, −y+2, −z; (iv) −x+1, −y+2, −z+1; (v) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2002).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  3. Maliar, T., Jedinak, A., Kadrabova, J. & Sturdik, E. (2004). Eur. J. Med. Chem.39, 241–248. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Zhou, Z. Z., Chen, Q. & Yang, G. F. (2008). Chin. J. Org. Chem.28, 1385–1392.
  7. Zhou, Z. Z., Ding, M. W. & Yang, G. F. (2007). Heteroat. Chem.18, 381–389.
  8. Zhou, Z.-Z., Huang, W., Zhao, P.-L., Chen, Q. & Yang, G.-F. (2005). Acta Cryst. E61, o2261–o2262.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029572/jj2002sup1.cif

e-65-o2030-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029572/jj2002Isup2.hkl

e-65-o2030-Isup2.hkl (223.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES