Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 11;65(Pt 8):o1844. doi: 10.1107/S1600536809025677

N 2,N 2,N 4,N 4-Tetra­ethyl-6-{2-[(E)-1-(4-nitro­phen­yl)ethyl­idene]hydrazino}-1,3,5-triazine-2,4-diamine

Xiao-Ru Pan a, Fang-Fang Jian b,*
PMCID: PMC2977253  PMID: 21583544

Abstract

The title compound, C19H28N8O2, was prepared by the reaction of N 2,N 2,N 4,N 4-tetra­ethyl-6-hydrazino-1,3,5-triazine-2,4-diamine and 1-(4-nitro­phen­yl)ethanone in ethanol at room temperature. The mol­ecular conformation is stabilized by intra­molecular C—H⋯N hydrogen-bonding inter­actions. There are also inter­molecular N—H⋯O hydrogen bonds, and C—H⋯π and π–π inter­actions, which help to stabilize the crystal structure. The centroid–centroid distance is 3.6172 (10) Å between adjacent benzene and 1,3,5-triazine rings.

Related literature

For the antimicrobial and anticancer applications of Schiff bases, see: Tarafder et al. (2000); Deschamps et al. (2003). For the ability of Schiff bases to form intramolecular hydrogen bonds by electron coupling between acid–base centers, see: Rozwadowski et al. (1999). For a related structure, see: Jian et al. (2006).graphic file with name e-65-o1844-scheme1.jpg

Experimental

Crystal data

  • C19H28N8O2

  • M r = 400.49

  • Monoclinic, Inline graphic

  • a = 12.333 (3) Å

  • b = 9.5286 (19) Å

  • c = 17.407 (4) Å

  • β = 92.12 (3)°

  • V = 2044.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 19318 measured reflections

  • 4667 independent reflections

  • 4054 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.104

  • S = 1.05

  • 4667 reflections

  • 278 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025677/at2835sup1.cif

e-65-o1844-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025677/at2835Isup2.hkl

e-65-o1844-Isup2.hkl (228.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.868 (15) 2.491 (15) 3.2751 (15) 150.7 (13)
N3—H3A⋯O2i 0.868 (15) 2.474 (15) 3.2486 (15) 149.0 (13)
C2—H2C⋯N4 0.97 2.38 2.7252 (15) 100
C7—H7A⋯N5 0.97 2.39 2.7322 (16) 100
C15—H15A⋯N2 0.93 2.39 2.7128 (15) 100
C1—H1ACg2ii 0.96 2.91 3.7486 (16) 147
C7—H7BCg1iii 0.97 2.71 3.3835 (15) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 and Cg2 are centroids of the N4–N6/ C9–C11 and C14–C19 rings, respectively.

Acknowledgments

The authors thank Weifang University for support of this research (grant No. 2008Z14) and the Natural Science Foundation of Shandong Province (grant No. Y2008B29).

supplementary crystallographic information

Comment

Schiff bases have antimicrobial (Tarafder et al., 2000) and anticancer applications (Deschamps et al., 2003). The recent growing interest in Schiff bases is also due to their ability to form intramolecular hydrogen bonds by electron coupling between acid-base centers (Rozwadowski et al., 1999). The part of our research is to find Schiff base with higher biological activity, we sythesized the title compound (I) and report its crystal structure here.

In the crystal structure of compound (I) (Fig. 1), the dihedral angle formed by the C14 –C19 and N4–N6/C9–C11 rings was 10.76 (1)°. The C═N bond length [1.2910 (17) Å] is in agreement with that observed before (Jian et al., 2006). There are intermolecular N—H···O hydrogen-bonds, C—H···π and π—π interactions to stabilize the crystal structure. The centroid–centroid distance iss 3.6172 (10) Å between the adjacent benzene and 1,3,5-triazine rings.

Experimental

A mixture of N2,N2,N4,N4-tetraethyl-6-hydrazinyl-1,3,5-triazine-2,4-diamine (0.02 mol) and 1-(4-nitrophenyl)ethanone (0.02 mol) was stirred with ethanol (50 mL) at 298 K for 2 h, affording the title compound (6.40 g, yield 80.0%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

The title compound, C19H28N8O2, was prepared by the reaction of N2,N2,N4,N4-tetraethyl-6-hydrazino-1,3,5-triazine-2,4-diamine and 1-(4-nitrophenyl)ethanone with ethanol at room temperature. The molecular conformation is stabilized by intramolecular C—H···N hydrogen-bonding interactions. There are also intermolecular N—H···O hydrogen bonds, and C—H···π and π–π interactions, which help to stabilize the crystal structure. The centroid–centroid distance is 3.6172 (10) Å between adjacent benzene and 1,3,5-triazine rings.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C19H28N8O2 F(000) = 856
Mr = 400.49 Dx = 1.301 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4667 reflections
a = 12.333 (3) Å θ = 3.2–27.5°
b = 9.5286 (19) Å µ = 0.09 mm1
c = 17.407 (4) Å T = 293 K
β = 92.12 (3)° Block, yellow
V = 2044.3 (7) Å3 0.22 × 0.18 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 4054 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.018
graphite θmax = 27.5°, θmin = 3.2°
φ and ω scans h = −16→15
19318 measured reflections k = −12→12
4667 independent reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.6629P] where P = (Fo2 + 2Fc2)/3
4667 reflections (Δ/σ)max = 0.001
278 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N6 0.86798 (7) 0.13524 (9) 0.14238 (5) 0.01620 (18)
O2 0.61084 (7) −0.21575 (10) −0.26492 (5) 0.0282 (2)
O1 0.71950 (7) −0.38030 (9) −0.29988 (5) 0.02543 (19)
N3 0.97484 (7) −0.06303 (10) 0.12715 (5) 0.01717 (19)
N5 0.91414 (7) 0.28722 (9) 0.24899 (5) 0.01601 (19)
N4 1.01161 (7) 0.07162 (9) 0.23260 (5) 0.01529 (18)
N7 1.05089 (7) 0.22043 (9) 0.33480 (5) 0.01625 (19)
N2 0.91687 (7) −0.09648 (9) 0.06200 (5) 0.01611 (19)
C19 0.75621 (8) −0.27251 (11) −0.18232 (6) 0.0168 (2)
N1 0.69125 (7) −0.29130 (10) −0.25356 (5) 0.0200 (2)
N8 0.77480 (7) 0.34066 (10) 0.16191 (5) 0.01862 (19)
C15 0.79067 (8) −0.14525 (11) −0.06617 (6) 0.0180 (2)
H15A 0.7718 −0.0751 −0.0320 0.022*
C11 0.94887 (8) 0.05417 (11) 0.16864 (6) 0.0146 (2)
C16 0.88343 (8) −0.22754 (11) −0.04984 (6) 0.0148 (2)
C17 0.90831 (8) −0.33498 (11) −0.10124 (6) 0.0168 (2)
H17A 0.9682 −0.3920 −0.0905 0.020*
C10 0.99015 (8) 0.19185 (11) 0.27004 (6) 0.0145 (2)
C18 0.84541 (8) −0.35806 (11) −0.16793 (6) 0.0175 (2)
H18A 0.8628 −0.4291 −0.2020 0.021*
C12 0.95244 (8) −0.19665 (11) 0.01989 (6) 0.0151 (2)
C14 0.72719 (8) −0.16701 (12) −0.13212 (6) 0.0188 (2)
H14A 0.6662 −0.1120 −0.1427 0.023*
C9 0.85476 (8) 0.25133 (11) 0.18551 (6) 0.0154 (2)
C2 1.13661 (8) 0.12427 (11) 0.36176 (6) 0.0168 (2)
H2B 1.1937 0.1780 0.3879 0.020*
H2C 1.1676 0.0793 0.3176 0.020*
C13 1.05659 (10) −0.27421 (13) 0.03706 (7) 0.0226 (2)
C3 1.02715 (9) 0.34442 (12) 0.38092 (6) 0.0200 (2)
H3D 1.0163 0.4241 0.3468 0.024*
H3E 1.0896 0.3646 0.4146 0.024*
C6 0.69842 (9) 0.30243 (12) 0.09900 (6) 0.0217 (2)
H6B 0.7367 0.2511 0.0602 0.026*
H6C 0.6692 0.3872 0.0754 0.026*
C7 0.75666 (9) 0.47314 (12) 0.20190 (7) 0.0212 (2)
H7A 0.7753 0.4615 0.2562 0.025*
H7B 0.6804 0.4975 0.1970 0.025*
C4 0.92728 (10) 0.32834 (14) 0.42962 (7) 0.0270 (3)
H4B 0.9165 0.4130 0.4582 0.040*
H4C 0.9380 0.2512 0.4646 0.040*
H4D 0.8646 0.3107 0.3967 0.040*
C5 0.60582 (10) 0.21306 (14) 0.12663 (8) 0.0320 (3)
H5B 0.5577 0.1901 0.0839 0.048*
H5C 0.5668 0.2642 0.1643 0.048*
H5D 0.6344 0.1283 0.1492 0.048*
C8 0.82384 (11) 0.59180 (13) 0.16992 (8) 0.0321 (3)
H8A 0.8099 0.6767 0.1976 0.048*
H8B 0.8045 0.6050 0.1165 0.048*
H8C 0.8995 0.5687 0.1755 0.048*
C1 1.09742 (10) 0.01179 (12) 0.41592 (7) 0.0244 (2)
H1A 1.1571 −0.0478 0.4314 0.037*
H1B 1.0420 −0.0433 0.3901 0.037*
H1C 1.0684 0.0553 0.4605 0.037*
H13A 1.0787 (13) −0.3377 (19) −0.0021 (10) 0.043 (5)*
H13B 1.0561 (14) −0.325 (2) 0.0845 (11) 0.050 (5)*
H13C 1.1172 (14) −0.2076 (19) 0.0445 (10) 0.046 (5)*
H3A 1.0310 (12) −0.1104 (16) 0.1438 (8) 0.027 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N6 0.0158 (4) 0.0174 (4) 0.0152 (4) 0.0012 (3) −0.0017 (3) −0.0008 (3)
O2 0.0243 (4) 0.0356 (5) 0.0240 (4) 0.0003 (3) −0.0093 (3) 0.0004 (4)
O1 0.0308 (4) 0.0284 (4) 0.0169 (4) −0.0089 (3) −0.0008 (3) −0.0064 (3)
N3 0.0177 (4) 0.0185 (4) 0.0148 (4) 0.0038 (3) −0.0056 (3) −0.0029 (3)
N5 0.0152 (4) 0.0170 (4) 0.0157 (4) 0.0002 (3) −0.0001 (3) −0.0017 (3)
N4 0.0152 (4) 0.0170 (4) 0.0135 (4) 0.0000 (3) −0.0011 (3) −0.0009 (3)
N7 0.0160 (4) 0.0182 (4) 0.0143 (4) 0.0002 (3) −0.0022 (3) −0.0035 (3)
N2 0.0176 (4) 0.0173 (4) 0.0132 (4) −0.0008 (3) −0.0031 (3) −0.0010 (3)
C19 0.0178 (5) 0.0198 (5) 0.0125 (5) −0.0063 (4) −0.0017 (4) 0.0007 (4)
N1 0.0208 (4) 0.0233 (5) 0.0156 (4) −0.0085 (4) −0.0025 (3) 0.0010 (4)
N8 0.0173 (4) 0.0187 (4) 0.0196 (4) 0.0037 (3) −0.0027 (3) −0.0018 (4)
C15 0.0192 (5) 0.0177 (5) 0.0171 (5) 0.0014 (4) −0.0011 (4) −0.0035 (4)
C11 0.0145 (4) 0.0161 (5) 0.0133 (5) −0.0014 (4) 0.0004 (4) 0.0002 (4)
C16 0.0161 (5) 0.0149 (5) 0.0132 (5) −0.0017 (4) 0.0000 (4) 0.0010 (4)
C17 0.0166 (5) 0.0161 (5) 0.0179 (5) 0.0003 (4) 0.0008 (4) −0.0003 (4)
C10 0.0131 (4) 0.0173 (5) 0.0132 (5) −0.0028 (4) 0.0017 (4) 0.0003 (4)
C18 0.0199 (5) 0.0166 (5) 0.0162 (5) −0.0033 (4) 0.0024 (4) −0.0037 (4)
C12 0.0164 (5) 0.0154 (5) 0.0134 (5) 0.0000 (4) −0.0007 (4) 0.0009 (4)
C14 0.0173 (5) 0.0198 (5) 0.0190 (5) 0.0008 (4) −0.0025 (4) 0.0005 (4)
C9 0.0141 (5) 0.0170 (5) 0.0150 (5) −0.0009 (4) 0.0016 (4) 0.0013 (4)
C2 0.0148 (5) 0.0203 (5) 0.0150 (5) −0.0008 (4) −0.0027 (4) −0.0009 (4)
C13 0.0232 (6) 0.0256 (6) 0.0185 (5) 0.0084 (4) −0.0052 (4) −0.0043 (4)
C3 0.0209 (5) 0.0204 (5) 0.0184 (5) −0.0010 (4) −0.0028 (4) −0.0064 (4)
C6 0.0205 (5) 0.0249 (6) 0.0192 (5) 0.0062 (4) −0.0054 (4) −0.0004 (4)
C7 0.0197 (5) 0.0202 (5) 0.0237 (5) 0.0062 (4) 0.0011 (4) −0.0026 (4)
C4 0.0279 (6) 0.0320 (6) 0.0213 (6) 0.0027 (5) 0.0039 (5) −0.0068 (5)
C5 0.0251 (6) 0.0302 (7) 0.0398 (7) −0.0021 (5) −0.0131 (5) 0.0053 (5)
C8 0.0366 (7) 0.0212 (6) 0.0388 (7) 0.0008 (5) 0.0071 (6) −0.0016 (5)
C1 0.0276 (6) 0.0234 (6) 0.0223 (5) −0.0002 (4) 0.0028 (4) 0.0026 (4)

Geometric parameters (Å, °)

N6—C11 1.3294 (13) C12—C13 1.5023 (14)
N6—C9 1.3502 (14) C14—H14A 0.9300
O2—N1 1.2354 (13) C2—C1 1.5182 (15)
O1—N1 1.2295 (13) C2—H2B 0.9700
N3—N2 1.3562 (12) C2—H2C 0.9700
N3—C11 1.3742 (14) C13—H13A 0.958 (18)
N3—H3A 0.868 (15) C13—H13B 0.96 (2)
N5—C10 1.3466 (13) C13—H13C 0.986 (18)
N5—C9 1.3470 (14) C3—C4 1.5285 (17)
N4—C11 1.3426 (13) C3—H3D 0.9700
N4—C10 1.3490 (14) C3—H3E 0.9700
N7—C10 1.3578 (13) C6—C5 1.5170 (18)
N7—C2 1.4632 (13) C6—H6B 0.9700
N7—C3 1.4641 (13) C6—H6C 0.9700
N2—C12 1.2902 (14) C7—C8 1.5195 (17)
C19—C18 1.3846 (15) C7—H7A 0.9700
C19—C14 1.3876 (15) C7—H7B 0.9700
C19—N1 1.4623 (13) C4—H4B 0.9600
N8—C9 1.3549 (13) C4—H4C 0.9600
N8—C7 1.4628 (14) C4—H4D 0.9600
N8—C6 1.4639 (14) C5—H5B 0.9600
C15—C14 1.3811 (15) C5—H5C 0.9600
C15—C16 1.4072 (14) C5—H5D 0.9600
C15—H15A 0.9300 C8—H8A 0.9600
C16—C17 1.4011 (14) C8—H8B 0.9600
C16—C12 1.4860 (14) C8—H8C 0.9600
C17—C18 1.3897 (15) C1—H1A 0.9600
C17—H17A 0.9300 C1—H1B 0.9600
C18—H18A 0.9300 C1—H1C 0.9600
C11—N6—C9 112.92 (9) C1—C2—H2C 108.9
N2—N3—C11 120.30 (9) H2B—C2—H2C 107.7
N2—N3—H3A 123.2 (10) C12—C13—H13A 115.6 (10)
C11—N3—H3A 116.5 (10) C12—C13—H13B 112.8 (11)
C10—N5—C9 113.82 (9) H13A—C13—H13B 108.0 (15)
C11—N4—C10 112.86 (9) C12—C13—H13C 110.4 (10)
C10—N7—C2 120.71 (9) H13A—C13—H13C 105.4 (14)
C10—N7—C3 120.12 (9) H13B—C13—H13C 103.7 (15)
C2—N7—C3 119.08 (8) N7—C3—C4 113.88 (9)
C12—N2—N3 117.98 (9) N7—C3—H3D 108.8
C18—C19—C14 122.29 (9) C4—C3—H3D 108.8
C18—C19—N1 119.22 (10) N7—C3—H3E 108.8
C14—C19—N1 118.47 (10) C4—C3—H3E 108.8
O1—N1—O2 122.83 (9) H3D—C3—H3E 107.7
O1—N1—C19 118.75 (9) N8—C6—C5 111.95 (10)
O2—N1—C19 118.42 (9) N8—C6—H6B 109.2
C9—N8—C7 121.34 (9) C5—C6—H6B 109.2
C9—N8—C6 120.77 (9) N8—C6—H6C 109.2
C7—N8—C6 117.73 (9) C5—C6—H6C 109.2
C14—C15—C16 121.06 (10) H6B—C6—H6C 107.9
C14—C15—H15A 119.5 N8—C7—C8 111.88 (9)
C16—C15—H15A 119.5 N8—C7—H7A 109.2
N6—C11—N4 127.98 (10) C8—C7—H7A 109.2
N6—C11—N3 118.56 (9) N8—C7—H7B 109.2
N4—C11—N3 113.46 (9) C8—C7—H7B 109.2
C17—C16—C15 118.28 (9) H7A—C7—H7B 107.9
C17—C16—C12 122.27 (9) C3—C4—H4B 109.5
C15—C16—C12 119.44 (9) C3—C4—H4C 109.5
C18—C17—C16 121.36 (10) H4B—C4—H4C 109.5
C18—C17—H17A 119.3 C3—C4—H4D 109.5
C16—C17—H17A 119.3 H4B—C4—H4D 109.5
N5—C10—N4 126.06 (9) H4C—C4—H4D 109.5
N5—C10—N7 116.60 (9) C6—C5—H5B 109.5
N4—C10—N7 117.34 (9) C6—C5—H5C 109.5
C19—C18—C17 118.25 (10) H5B—C5—H5C 109.5
C19—C18—H18A 120.9 C6—C5—H5D 109.5
C17—C18—H18A 120.9 H5B—C5—H5D 109.5
N2—C12—C16 114.46 (9) H5C—C5—H5D 109.5
N2—C12—C13 123.85 (9) C7—C8—H8A 109.5
C16—C12—C13 121.66 (9) C7—C8—H8B 109.5
C15—C14—C19 118.74 (10) H8A—C8—H8B 109.5
C15—C14—H14A 120.6 C7—C8—H8C 109.5
C19—C14—H14A 120.6 H8A—C8—H8C 109.5
N5—C9—N6 126.22 (9) H8B—C8—H8C 109.5
N5—C9—N8 117.19 (9) C2—C1—H1A 109.5
N6—C9—N8 116.59 (9) C2—C1—H1B 109.5
N7—C2—C1 113.49 (9) H1A—C1—H1B 109.5
N7—C2—H2B 108.9 C2—C1—H1C 109.5
C1—C2—H2B 108.9 H1A—C1—H1C 109.5
N7—C2—H2C 108.9 H1B—C1—H1C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O1i 0.868 (15) 2.491 (15) 3.2751 (15) 150.7 (13)
N3—H3A···O2i 0.868 (15) 2.474 (15) 3.2486 (15) 149.0 (13)
C2—H2C···N4 0.97 2.38 2.7252 (15) 100
C7—H7A···N5 0.97 2.39 2.7322 (16) 100
C15—H15A···N2 0.93 2.39 2.7128 (15) 100
C1—H1A···Cg2ii 0.96 2.91 3.7486 (16) 147
C7—H7B···Cg1iii 0.97 2.71 3.3835 (15) 127

Symmetry codes: (i) x+1/2, −y−1/2, z+1/2; (ii) x−1/2, −y−3/2, z−1/2; (iii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2835).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem.42, 7366–7368. [DOI] [PubMed]
  3. Jian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198–o3199.
  4. Rozwadowski, Z., Majewski, E., Dziembowska, T. & Hansen, P. E. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2809–2817.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem.25, 456–460.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025677/at2835sup1.cif

e-65-o1844-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025677/at2835Isup2.hkl

e-65-o1844-Isup2.hkl (228.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES