Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 8;65(Pt 8):o1799. doi: 10.1107/S160053680902577X

10-Benzyl-10H-phenothia­zine 9-oxide

Zhouqing Xu a, Yanchun Sun b, Lei Yang a, Qiang Wang a,*
PMCID: PMC2977256  PMID: 21583505

Abstract

In the title compound, C19H15NOS, the butterfly angle between the mean planes defined by the S, N and phenyl C atoms of the two wings of the phenothiazine unit is 23.4 (1)°. In the crystal, a supra­molecular two-dimensional arrangement arises from weak inter­molecular C—H⋯O inter­actions.

Related literature

For applications of phenothia­zines, see: Miller et al. (1999); Wermuth (2003); Wang et al. (2008); Lam et al. (2001). For the synthesis, see: Zhu et al. (2006); Gilman et al. (1954).graphic file with name e-65-o1799-scheme1.jpg

Experimental

Crystal data

  • C19H15NOS

  • M r = 305.38

  • Monoclinic, Inline graphic

  • a = 6.2819 (4) Å

  • b = 11.9259 (8) Å

  • c = 20.3220 (14) Å

  • β = 94.6140 (10)°

  • V = 1517.54 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.30 × 0.22 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.939, T max = 0.961

  • 7251 measured reflections

  • 2511 independent reflections

  • 1872 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.094

  • S = 1.02

  • 2511 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902577X/pv2174sup1.cif

e-65-o1799-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902577X/pv2174Isup2.hkl

e-65-o1799-Isup2.hkl (123.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O1i 0.97 2.52 3.431 (2) 157
C18—H18⋯O1ii 0.93 2.57 3.442 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Foundation of Henan Polytechnic University for Doctor Teachers, and the authors thank Ms Q. F. Wang for her support with the single-crystal X-ray diffraction data collection.

supplementary crystallographic information

Comment

Phenothiazine molecule is a well known heterocycle. The phenothiazine structure occurs in many synthetic dyes, electroluminescent materials (Miller et al., 1999) and drugs, especially various antipsychotic drugs, e.g., chlorpromazine and promethazine (Wermuth, 2003). Recently, some new applications of phenothazine derivatives have been found in medicines, such as antitubercular (Wang et al., 2008) and antitumor (Lam et al., 2001). As a part of our programme devoted to the new applications of phenothazine derivatives in medicne, we report herein the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1, with its respective labels. The butterfly angle between the mean-planes defined by atoms S1/N1/C1-C6 and S1/N1/C7-C12 is 23.4 (1) °. The crystal packing (Fig. 2) consists of two-dimensional infinite plane along the a axis generated by intermolecular interactions of the weak C—H···O hydrogen bonds (details are in Table 1).

Experimental

All reagents were of analytical grade. The title compound was prepared according to a literature method (Zhu et al., 2006; Gilman et al., 1954) from N-benzylphenothiazine. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared spectra and elemental analyses. Single crystals of the title compound were obtained by slow evaporation of its ethanol solution. The X-ray diffraction studies were made at room temperature.

Refinement

All H atoms were included in calculated positions, with C—H bond lengths fixed at 0.97 Å (methylene CH2) and 0.93Å (aryl group) and were refined in the riding-model approximation. Uiso(H) values were allowed at 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines, viewed down the a axis.

Crystal data

C19H15NOS F(000) = 640
Mr = 305.38 Dx = 1.337 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1664 reflections
a = 6.2819 (4) Å θ = 2.6–22.2°
b = 11.9259 (8) Å µ = 0.21 mm1
c = 20.3220 (14) Å T = 296 K
β = 94.614 (1)° Block, yellow
V = 1517.54 (18) Å3 0.30 × 0.22 × 0.19 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2511 independent reflections
Radiation source: fine-focus sealed tube 1872 reflections with I > 2σ(I)
graphite Rint = 0.032
φ and ω scans θmax = 24.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −7→6
Tmin = 0.939, Tmax = 0.961 k = −13→13
7251 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.2518P] where P = (Fo2 + 2Fc2)/3
2511 reflections (Δ/σ)max = 0.001
199 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2291 (2) 0.28879 (12) 0.65659 (8) 0.0377 (4)
O1 0.2735 (3) −0.01747 (11) 0.65821 (7) 0.0601 (4)
S1 0.11841 (9) 0.04344 (4) 0.61145 (3) 0.04963 (19)
C1 0.0471 (3) 0.24089 (15) 0.67982 (9) 0.0379 (5)
C2 −0.0702 (3) 0.29706 (17) 0.72559 (10) 0.0470 (5)
H2 −0.0251 0.3672 0.7411 0.056*
C3 −0.2502 (3) 0.2501 (2) 0.74777 (12) 0.0559 (6)
H3 −0.3216 0.2879 0.7794 0.067*
C4 −0.3281 (4) 0.1485 (2) 0.72440 (12) 0.0615 (7)
H4 −0.4534 0.1190 0.7387 0.074*
C5 −0.2173 (3) 0.09217 (19) 0.67984 (11) 0.0553 (6)
H5 −0.2685 0.0235 0.6636 0.066*
C6 −0.0284 (3) 0.13530 (16) 0.65792 (10) 0.0429 (5)
C7 0.3155 (3) 0.25083 (15) 0.59956 (9) 0.0385 (5)
C8 0.4588 (3) 0.31695 (18) 0.56709 (11) 0.0490 (5)
H8 0.4994 0.3865 0.5845 0.059*
C9 0.5405 (4) 0.2812 (2) 0.51022 (12) 0.0613 (6)
H9 0.6383 0.3261 0.4904 0.074*
C10 0.4801 (4) 0.1798 (2) 0.48169 (12) 0.0644 (7)
H10 0.5326 0.1571 0.4423 0.077*
C11 0.3413 (4) 0.11342 (18) 0.51272 (11) 0.0551 (6)
H11 0.3003 0.0447 0.4942 0.066*
C12 0.2605 (3) 0.14667 (16) 0.57131 (10) 0.0424 (5)
C13 0.3051 (3) 0.39597 (15) 0.68456 (10) 0.0400 (5)
H13A 0.4581 0.4007 0.6815 0.048*
H13B 0.2798 0.3974 0.7310 0.048*
C14 0.2012 (3) 0.49772 (15) 0.65152 (9) 0.0380 (5)
C15 0.0249 (4) 0.49180 (19) 0.60717 (11) 0.0571 (6)
H15 −0.0329 0.4223 0.5951 0.068*
C16 −0.0678 (4) 0.5888 (2) 0.58025 (13) 0.0713 (7)
H16 −0.1875 0.5843 0.5503 0.086*
C17 0.0174 (4) 0.6915 (2) 0.59780 (13) 0.0658 (7)
H17 −0.0449 0.7566 0.5799 0.079*
C18 0.1927 (4) 0.69818 (18) 0.64129 (12) 0.0577 (6)
H18 0.2498 0.7679 0.6531 0.069*
C19 0.2860 (3) 0.60252 (16) 0.66792 (10) 0.0470 (5)
H19 0.4072 0.6080 0.6972 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0403 (9) 0.0307 (9) 0.0428 (9) 0.0004 (8) 0.0072 (7) 0.0001 (7)
O1 0.0760 (11) 0.0362 (8) 0.0685 (10) 0.0096 (8) 0.0085 (9) 0.0108 (7)
S1 0.0607 (4) 0.0344 (3) 0.0537 (4) −0.0069 (3) 0.0040 (3) −0.0047 (2)
C1 0.0382 (11) 0.0337 (10) 0.0415 (11) 0.0043 (9) 0.0021 (9) 0.0082 (9)
C2 0.0483 (13) 0.0402 (12) 0.0538 (13) 0.0088 (10) 0.0121 (10) 0.0072 (10)
C3 0.0492 (14) 0.0589 (15) 0.0617 (15) 0.0157 (12) 0.0167 (11) 0.0140 (12)
C4 0.0402 (13) 0.0721 (17) 0.0739 (17) 0.0005 (13) 0.0153 (12) 0.0190 (14)
C5 0.0473 (13) 0.0522 (13) 0.0655 (15) −0.0094 (11) −0.0006 (12) 0.0110 (12)
C6 0.0419 (12) 0.0407 (12) 0.0458 (12) −0.0003 (10) 0.0012 (9) 0.0053 (9)
C7 0.0375 (11) 0.0346 (11) 0.0437 (12) 0.0061 (9) 0.0047 (9) 0.0040 (9)
C8 0.0474 (13) 0.0426 (12) 0.0586 (14) 0.0012 (10) 0.0142 (11) 0.0047 (11)
C9 0.0613 (15) 0.0594 (15) 0.0664 (16) 0.0094 (13) 0.0250 (12) 0.0106 (13)
C10 0.0782 (18) 0.0658 (17) 0.0527 (15) 0.0166 (15) 0.0258 (13) 0.0029 (13)
C11 0.0688 (16) 0.0474 (13) 0.0493 (13) 0.0133 (12) 0.0061 (12) −0.0056 (11)
C12 0.0449 (12) 0.0386 (11) 0.0435 (12) 0.0064 (10) 0.0032 (9) 0.0025 (9)
C13 0.0406 (11) 0.0351 (11) 0.0441 (11) −0.0019 (9) 0.0024 (9) −0.0017 (9)
C14 0.0405 (12) 0.0341 (11) 0.0398 (11) 0.0028 (9) 0.0059 (9) −0.0015 (9)
C15 0.0581 (15) 0.0467 (13) 0.0640 (15) −0.0007 (11) −0.0105 (12) 0.0036 (11)
C16 0.0649 (17) 0.0728 (18) 0.0735 (17) 0.0149 (15) −0.0109 (13) 0.0165 (15)
C17 0.0839 (19) 0.0470 (15) 0.0682 (16) 0.0211 (14) 0.0174 (15) 0.0187 (12)
C18 0.0831 (18) 0.0347 (12) 0.0580 (14) 0.0000 (12) 0.0225 (13) 0.0035 (11)
C19 0.0572 (14) 0.0402 (12) 0.0443 (12) −0.0051 (11) 0.0078 (10) −0.0017 (10)

Geometric parameters (Å, °)

N1—C1 1.394 (2) C9—C10 1.381 (3)
N1—C7 1.394 (2) C9—H9 0.9300
N1—C13 1.463 (2) C10—C11 1.368 (3)
O1—S1 1.4934 (15) C10—H10 0.9300
S1—C6 1.756 (2) C11—C12 1.389 (3)
S1—C12 1.759 (2) C11—H11 0.9300
C1—C2 1.402 (3) C13—C14 1.509 (2)
C1—C6 1.405 (3) C13—H13A 0.9700
C2—C3 1.370 (3) C13—H13B 0.9700
C2—H2 0.9300 C14—C15 1.372 (3)
C3—C4 1.377 (3) C14—C19 1.389 (3)
C3—H3 0.9300 C15—C16 1.388 (3)
C4—C5 1.363 (3) C15—H15 0.9300
C4—H4 0.9300 C16—C17 1.372 (3)
C5—C6 1.399 (3) C16—H16 0.9300
C5—H5 0.9300 C17—C18 1.358 (3)
C7—C12 1.400 (3) C17—H17 0.9300
C7—C8 1.401 (3) C18—C19 1.374 (3)
C8—C9 1.370 (3) C18—H18 0.9300
C8—H8 0.9300 C19—H19 0.9300
C1—N1—C7 122.21 (16) C11—C10—C9 118.5 (2)
C1—N1—C13 118.50 (15) C11—C10—H10 120.8
C7—N1—C13 118.04 (15) C9—C10—H10 120.8
O1—S1—C6 107.77 (9) C10—C11—C12 121.3 (2)
O1—S1—C12 107.82 (9) C10—C11—H11 119.3
C6—S1—C12 96.94 (9) C12—C11—H11 119.3
N1—C1—C2 121.18 (17) C11—C12—C7 120.65 (19)
N1—C1—C6 121.68 (18) C11—C12—S1 115.57 (16)
C2—C1—C6 117.14 (18) C7—C12—S1 123.25 (15)
C3—C2—C1 121.0 (2) N1—C13—C14 114.44 (15)
C3—C2—H2 119.5 N1—C13—H13A 108.6
C1—C2—H2 119.5 C14—C13—H13A 108.6
C2—C3—C4 121.7 (2) N1—C13—H13B 108.6
C2—C3—H3 119.1 C14—C13—H13B 108.6
C4—C3—H3 119.1 H13A—C13—H13B 107.6
C5—C4—C3 118.5 (2) C15—C14—C19 118.54 (18)
C5—C4—H4 120.8 C15—C14—C13 123.23 (17)
C3—C4—H4 120.8 C19—C14—C13 118.22 (17)
C4—C5—C6 121.5 (2) C14—C15—C16 120.5 (2)
C4—C5—H5 119.3 C14—C15—H15 119.8
C6—C5—H5 119.3 C16—C15—H15 119.8
C5—C6—C1 120.1 (2) C17—C16—C15 119.9 (2)
C5—C6—S1 115.95 (16) C17—C16—H16 120.0
C1—C6—S1 123.43 (15) C15—C16—H16 120.0
N1—C7—C12 121.97 (17) C18—C17—C16 120.0 (2)
N1—C7—C8 121.10 (18) C18—C17—H17 120.0
C12—C7—C8 116.93 (19) C16—C17—H17 120.0
C9—C8—C7 121.4 (2) C17—C18—C19 120.4 (2)
C9—C8—H8 119.3 C17—C18—H18 119.8
C7—C8—H8 119.3 C19—C18—H18 119.8
C8—C9—C10 121.2 (2) C18—C19—C14 120.6 (2)
C8—C9—H9 119.4 C18—C19—H19 119.7
C10—C9—H9 119.4 C14—C19—H19 119.7
C7—N1—C1—C2 −162.60 (17) C7—C8—C9—C10 1.7 (3)
C13—N1—C1—C2 4.4 (3) C8—C9—C10—C11 −2.1 (4)
C7—N1—C1—C6 16.6 (3) C9—C10—C11—C12 0.5 (3)
C13—N1—C1—C6 −176.46 (16) C10—C11—C12—C7 1.5 (3)
N1—C1—C2—C3 179.35 (18) C10—C11—C12—S1 −170.45 (17)
C6—C1—C2—C3 0.1 (3) N1—C7—C12—C11 176.90 (18)
C1—C2—C3—C4 −2.6 (3) C8—C7—C12—C11 −1.8 (3)
C2—C3—C4—C5 2.4 (3) N1—C7—C12—S1 −11.8 (3)
C3—C4—C5—C6 0.1 (3) C8—C7—C12—S1 169.48 (15)
C4—C5—C6—C1 −2.5 (3) O1—S1—C12—C11 90.65 (17)
C4—C5—C6—S1 169.87 (17) C6—S1—C12—C11 −158.12 (16)
N1—C1—C6—C5 −176.90 (17) O1—S1—C12—C7 −81.06 (18)
C2—C1—C6—C5 2.3 (3) C6—S1—C12—C7 30.17 (18)
N1—C1—C6—S1 11.3 (3) C1—N1—C13—C14 −86.1 (2)
C2—C1—C6—S1 −169.46 (15) C7—N1—C13—C14 81.4 (2)
O1—S1—C6—C5 −90.78 (17) N1—C13—C14—C15 11.1 (3)
C12—S1—C6—C5 157.95 (16) N1—C13—C14—C19 −170.27 (17)
O1—S1—C6—C1 81.32 (17) C19—C14—C15—C16 −1.0 (3)
C12—S1—C6—C1 −29.95 (18) C13—C14—C15—C16 177.7 (2)
C1—N1—C7—C12 −16.3 (3) C14—C15—C16—C17 0.2 (4)
C13—N1—C7—C12 176.65 (16) C15—C16—C17—C18 0.2 (4)
C1—N1—C7—C8 162.34 (17) C16—C17—C18—C19 0.1 (4)
C13—N1—C7—C8 −4.7 (3) C17—C18—C19—C14 −0.9 (3)
N1—C7—C8—C9 −178.49 (19) C15—C14—C19—C18 1.3 (3)
C12—C7—C8—C9 0.2 (3) C13—C14—C19—C18 −177.42 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13B···O1i 0.97 2.52 3.431 (2) 157
C18—H18···O1ii 0.93 2.57 3.442 (3) 157

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2174).

References

  1. Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2003). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Gilman, H., Ingham, R. K., Champaigne, J. F., Diehl, J. W. & Ranck, R. O. (1954). J. Org. Chem.19, 560–569.
  4. Lam, M., Oleinick, N. L. & Nieminen, A. L. (2001). J. Biol. Chem.276, 47379–47386. [DOI] [PubMed]
  5. Miller, M. T., Gantzel, P. K. & Karpishin, T. (1999). J. Am. Chem. Soc.121, 4292–4293.
  6. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wang, J., Dong, M., Liang, J., Chang, Z., Feng, S., Wang, H. & Ding, N. (2008). Chin. J. Lab. Diagn.12, 381–382.
  9. Wermuth, C. G. (2003). The Practice of Medicinal Chemistry, 2th ed. London: Acdemic.
  10. Zhu, X., Zhang, J. & Cheng, J. (2006). J. Org. Chem.71, 7007–7015. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902577X/pv2174sup1.cif

e-65-o1799-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902577X/pv2174Isup2.hkl

e-65-o1799-Isup2.hkl (123.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES