Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 31;65(Pt 8):o2053. doi: 10.1107/S1600536809029729

1-Cyclo­propyl-6-fluoro-7-(4-nitro­so­piperazin-1-yl)-4-oxo-1,4-dihydro­quinoline-3-carboxylic acid

Tao Li a, Li-Rong Tang b, Qiao-Ling Zeng b, Wei-Jin Chen a, Biao Huang b,*
PMCID: PMC2977261  PMID: 21583715

Abstract

The title compound, C17H17FN4O4, is a derivative of ciprofloxacin [1-cyclo­propyl-6-fluoro-4-oxo-7-(1-piperazin­yl)-1,4-dihydro­quinoline-3-carboxylic acid]. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds together with π–π electron ring inter­actions [centroid–centroid separations between quinoline rings of 3.5864 (11) and 3.9339 (13) Å]. A strong intra­molecular O—H⋯O hydrogen bonds is present as well as an intra­molecular C—H⋯F inter­action.

Related literature

For the biological activity of ciprofloxacin compounds, see: Neu (1987). For related structures, see: Turel et al. (1996); Drevenšek et al. (2003); Li et al. (2005); Lou et al. (2007). The nitroso-group geometry is similar to that observed in 1,4-dinitro­sopiperazine, see: Sekido et al. (1985).graphic file with name e-65-o2053-scheme1.jpg

Experimental

Crystal data

  • C17H17FN4O4

  • M r = 360.35

  • Triclinic, Inline graphic

  • a = 8.378 (3) Å

  • b = 9.625 (4) Å

  • c = 10.328 (4) Å

  • α = 102.99 (2)°

  • β = 96.089 (14)°

  • γ = 97.392 (16)°

  • V = 797.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Rigaku Mercury CCD/AFC diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) T min = 0.976, T max = 0.977

  • 6267 measured reflections

  • 3631 independent reflections

  • 2568 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.207

  • S = 1.06

  • 3631 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029729/fb2160sup1.cif

e-65-o2053-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029729/fb2160Isup2.hkl

e-65-o2053-Isup2.hkl (178KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H18⋯O3 0.84 1.78 2.562 (2) 153
C15—H15A⋯O2i 0.99 2.50 3.405 (3) 151
C15—H15B⋯O3ii 0.99 2.51 3.385 (3) 147
C16—H16A⋯O1iii 0.99 2.60 3.264 (3) 125
C16—H16B⋯F1 0.99 2.14 2.852 (3) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The work was supported by a grant from the National Science Foundation of China (30771682).

supplementary crystallographic information

Comment

Ciprofloxacin (1-cyclopropyl-6-fluoro -1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid) is used as an antibacterial agent. Ciprofloxacin is widely used in clinical practice for the treatment of certain diseases caused by some Gram negative and as well as Gram positive microorganisms (Neu, 1987). Recently, several structures containing ciprofloxacin have been reported (Turel et al., 1996; Drevenšek et al., 2003; Lou et al., 2007).

Nitrosation of amines by nitrites takes place in acid medium. The nature of the product depends on the nature of the initial amine. Commonly the secondary alkyl amines yield N-nitrosoamines. In our case, the N-nitrosation of ciprofloxacin occurs by ytterbium nitrate in nitric acid and results in the formation of ON-ciprofloxacin under hydrothermal reaction.

The title compound is composed of an essentially planar quinoline ring system [the mean deviation from best plane is 0.0274 (2) Å] which is substituted with cyclopropyl, fluoro, oxo, carboxyl and nitrosopiperazinium groups (Fig. 1). The bond distances and angles are in agreement with those in 1-cyclopropyl-6-fluoro-7- (4-formylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (Li et al., 2005).

In the title structure, the six-membered piperazinyl ring adopts a chair conformation. The nitroso-group geometry with the NO distance equal to 1.2382 (31) Å and O—N—N bond angle of 115.583 (20)° is similar to that observed in 1,4-dinitrosopiperazine (Sekido et al., 1985).

For the hydrogen bonding, please see Tab. 1 that comprises intramolecular and intermolecular hydrogen bonds in the structure (Fig. 2). As shown in Fig. 3, the crystal packing is stabilized by π-π stacking interactions of the quinoline rings, in which the N1 ring (N1/C4—C6/C7—C13) stacks with the inversion-related N1 rings, with the centroid-centroid separations of 3.5864 (11) and 3.9339 (13) Å.

Experimental

The title compound was hydrothermally synthesized under autogenous pressure. A mixture of C17H18FN3O3.HCl (ciprofloxacin hydrochloride) (50 mg, 0.14 mmol), Yb(NO3)3 (72 mg, 0.2 mmol), HNO3 (1 ml of 0.5 M), C2H5OH (4 ml) and H2O (8 ml) was sealed in a stainless reactor with a Teflon liner. The mixture was heated to 393 K for one day. After cooling at a rate of 10 K h-1 to room temperature, yellow needle crystals (average 4 mm long by 0.6 mm diameter) were separated by filtration, washed with distilled water and finally dried in air. Yield 75%, Anal. calc. for C17H17FN4O4: C, 56.66; H, 4.76; N, 15.55%; Found: C, 56.82; H, 4.75; N, 15.63%. IR (KBr pellet): 1719(s), 1627(s), 1489(m), 1454(m), 1334(m), 1339(m), 1257(s), 1152(m), 994(m), 896(m), 798(m), 743(m).

Refinement

All the hydrogen atoms were discernible in the difference electron density maps. However, the hydrogens were situated into idealized positions and constrained by the riding model approximation: O—Hcarboxyl = 0.84 [the command AFIX 147 of SHELXL-97 has been applied (Sheldrick, 2008)], Caryl—Haryl = 0.95, Cmethylene—Hmethylene = 0.99 and Cmethine—Hmethine = 1.00 Å; UisoH = 1.2Ueq(C); UisoHcarboxyl = 1.5Ueq(O). The highest electron-density peak is situated 1.12 Å from H16A and the deepest hole 0.54 Å from C17.

Figures

Fig. 1.

Fig. 1.

View of the title molecule. The displacement ellipsoids are drawn at the 30% propability level

Fig. 2.

Fig. 2.

The intramolecular and intermoleclar hydrogen bonds or interactions (the dashed lines) in title compound (see Table 1). Symmetry codes: (A) x+1, y+1, z+1; (B) x+1, y+1, z; (C) x, y+1, z

Fig. 3.

Fig. 3.

The packing of title molecules, showing the π-π-electron ring interactions. The H atoms have been omitted for clarity

Crystal data

C17H17FN4O4 Z = 2
Mr = 360.35 F(000) = 376
Triclinic, P1 Dx = 1.502 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.378 (3) Å Cell parameters from 771 reflections
b = 9.625 (4) Å θ = 2.0–27.4°
c = 10.328 (4) Å µ = 0.12 mm1
α = 102.99 (2)° T = 293 K
β = 96.089 (14)° Block, yellow
γ = 97.392 (16)° 0.2 × 0.2 × 0.2 mm
V = 797.0 (6) Å3

Data collection

Rigaku Mercury CCD/AFC diffractometer 3631 independent reflections
Radiation source: fine-focus sealed tube 2568 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 27.4°, θmin = 2.5°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) h = −10→10
Tmin = 0.976, Tmax = 0.977 k = −12→12
6267 measured reflections l = −13→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: difference Fourier map
wR(F2) = 0.207 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1165P)2 + 0.047P] where P = (Fo2 + 2Fc2)/3
3631 reflections (Δ/σ)max < 0.001
236 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.35 e Å3
67 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.14474 (19) 0.38921 (17) 0.16119 (15) 0.0330 (4)
O2 −0.1340 (2) 0.09746 (18) −0.25939 (15) 0.0561 (5)
H18 −0.0827 0.1674 −0.2814 0.084*
O3 0.0676 (2) 0.32428 (17) −0.25086 (13) 0.0472 (4)
C8 0.2117 (2) 0.4611 (2) −0.03990 (18) 0.0331 (4)
F1 0.51960 (16) 0.74426 (14) −0.07933 (12) 0.0505 (4)
C13 0.2335 (2) 0.48548 (19) 0.10118 (18) 0.0318 (4)
C11 0.4372 (2) 0.6987 (2) 0.1245 (2) 0.0342 (4)
C5 0.0120 (2) 0.2477 (2) −0.05450 (19) 0.0356 (5)
O1 −0.1742 (2) 0.03235 (18) −0.07173 (17) 0.0580 (5)
C12 0.3415 (2) 0.6063 (2) 0.18211 (19) 0.0344 (4)
H12A 0.3488 0.6247 0.2770 0.041*
C9 0.3081 (3) 0.5551 (2) −0.0978 (2) 0.0372 (5)
H9A 0.2962 0.5415 −0.1925 0.045*
N2 0.5528 (2) 0.81427 (18) 0.20147 (16) 0.0380 (4)
C7 0.0944 (2) 0.3414 (2) −0.1242 (2) 0.0361 (5)
C10 0.4184 (3) 0.6654 (2) −0.0179 (2) 0.0361 (5)
C4 0.0408 (2) 0.2758 (2) 0.0830 (2) 0.0359 (5)
H4A −0.0163 0.2111 0.1257 0.043*
C6 −0.1066 (3) 0.1168 (2) −0.1269 (2) 0.0428 (5)
N3 0.7368 (3) 1.0685 (2) 0.37104 (18) 0.0492 (5)
C3 0.1612 (3) 0.4155 (2) 0.30774 (19) 0.0373 (5)
H3A 0.1132 0.4997 0.3544 0.045*
C14 0.5794 (3) 0.8301 (2) 0.3473 (2) 0.0473 (6)
H14A 0.5869 0.7346 0.3663 0.057*
H14B 0.4859 0.8666 0.3870 0.057*
C2 0.3112 (3) 0.3878 (3) 0.3816 (2) 0.0512 (6)
H2A 0.3549 0.4545 0.4696 0.061*
H2B 0.3943 0.3493 0.3283 0.061*
C15 0.7354 (3) 0.9344 (2) 0.4114 (2) 0.0487 (6)
H15A 0.7434 0.9535 0.5103 0.058*
H15B 0.8306 0.8901 0.3840 0.058*
C16 0.5548 (3) 0.9558 (3) 0.1687 (2) 0.0570 (7)
H16A 0.4633 1.0008 0.2039 0.068*
H16B 0.5390 0.9417 0.0700 0.068*
C17 0.7110 (3) 1.0550 (3) 0.2268 (2) 0.0574 (7)
H17A 0.8022 1.0156 0.1856 0.069*
H17B 0.7058 1.1509 0.2082 0.069*
C1 0.1525 (3) 0.2910 (3) 0.3709 (2) 0.0551 (7)
H1A 0.1379 0.1929 0.3111 0.066*
H1B 0.0986 0.2981 0.4524 0.066*
N4 0.7544 (3) 1.1903 (2) 0.4635 (2) 0.0654 (7)
O4 0.7463 (3) 1.3001 (2) 0.4211 (2) 0.0895 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0369 (9) 0.0264 (8) 0.0303 (8) −0.0042 (6) −0.0015 (7) 0.0040 (6)
O2 0.0664 (11) 0.0464 (10) 0.0397 (9) −0.0092 (8) −0.0087 (8) −0.0047 (7)
O3 0.0588 (10) 0.0433 (9) 0.0306 (8) −0.0015 (7) −0.0052 (7) 0.0012 (6)
C8 0.0372 (10) 0.0277 (9) 0.0302 (10) 0.0036 (8) −0.0017 (8) 0.0023 (7)
F1 0.0587 (8) 0.0475 (8) 0.0438 (7) −0.0084 (6) 0.0111 (6) 0.0155 (6)
C13 0.0359 (10) 0.0249 (9) 0.0310 (10) 0.0015 (8) 0.0008 (8) 0.0029 (7)
C11 0.0373 (10) 0.0278 (9) 0.0340 (10) 0.0004 (8) −0.0015 (8) 0.0061 (8)
C5 0.0382 (10) 0.0268 (10) 0.0348 (11) 0.0003 (8) −0.0037 (8) −0.0008 (8)
O1 0.0590 (11) 0.0456 (10) 0.0569 (10) −0.0192 (8) −0.0103 (8) 0.0103 (8)
C12 0.0416 (11) 0.0270 (9) 0.0295 (10) −0.0019 (8) 0.0003 (8) 0.0025 (7)
C9 0.0455 (11) 0.0354 (10) 0.0293 (10) 0.0065 (9) 0.0029 (8) 0.0057 (8)
N2 0.0446 (10) 0.0308 (9) 0.0329 (9) −0.0071 (7) −0.0044 (7) 0.0074 (7)
C7 0.0390 (11) 0.0306 (10) 0.0336 (10) 0.0058 (8) −0.0010 (8) −0.0002 (8)
C10 0.0395 (10) 0.0312 (10) 0.0375 (11) 0.0008 (8) 0.0039 (8) 0.0115 (8)
C4 0.0361 (10) 0.0284 (10) 0.0380 (11) −0.0023 (8) −0.0013 (8) 0.0043 (8)
C6 0.0426 (11) 0.0340 (11) 0.0436 (12) 0.0024 (9) −0.0064 (9) 0.0002 (9)
N3 0.0662 (13) 0.0354 (10) 0.0359 (9) −0.0088 (9) −0.0016 (9) 0.0013 (7)
C3 0.0473 (12) 0.0311 (10) 0.0294 (10) −0.0022 (8) 0.0031 (8) 0.0045 (8)
C14 0.0608 (14) 0.0394 (12) 0.0337 (11) −0.0112 (10) −0.0030 (10) 0.0075 (9)
C2 0.0527 (14) 0.0551 (14) 0.0393 (12) −0.0017 (11) −0.0041 (10) 0.0086 (10)
C15 0.0607 (15) 0.0401 (12) 0.0364 (11) −0.0056 (10) −0.0068 (10) 0.0051 (9)
C16 0.0679 (16) 0.0395 (13) 0.0546 (14) −0.0137 (11) −0.0191 (12) 0.0179 (11)
C17 0.0767 (18) 0.0424 (13) 0.0451 (13) −0.0128 (12) −0.0004 (12) 0.0104 (10)
C1 0.0709 (16) 0.0458 (13) 0.0420 (12) −0.0121 (12) −0.0059 (11) 0.0150 (10)
N4 0.0859 (17) 0.0430 (12) 0.0536 (13) −0.0081 (11) 0.0084 (12) −0.0059 (10)
O4 0.132 (2) 0.0383 (11) 0.0856 (16) 0.0046 (12) 0.0002 (14) 0.0002 (10)

Geometric parameters (Å, °)

N1—C4 1.346 (2) C4—H4A 0.9500
N1—C13 1.405 (2) N3—N4 1.315 (3)
N1—C3 1.466 (2) N3—C15 1.442 (3)
O2—C6 1.330 (3) N3—C17 1.456 (3)
O2—H18 0.8400 C3—C1 1.485 (3)
O3—C7 1.273 (2) C3—C2 1.485 (3)
C8—C9 1.410 (3) C3—H3A 1.0000
C8—C13 1.411 (3) C14—C15 1.528 (3)
C8—C7 1.458 (3) C14—H14A 0.9900
F1—C10 1.365 (2) C14—H14B 0.9900
C13—C12 1.414 (3) C2—C1 1.501 (3)
C11—C12 1.394 (3) C2—H2A 0.9900
C11—N2 1.404 (2) C2—H2B 0.9900
C11—C10 1.420 (3) C15—H15A 0.9900
C5—C4 1.373 (3) C15—H15B 0.9900
C5—C7 1.431 (3) C16—C17 1.496 (3)
C5—C6 1.493 (3) C16—H16A 0.9900
O1—C6 1.210 (3) C16—H16B 0.9900
C12—H12A 0.9500 C17—H17A 0.9900
C9—C10 1.361 (3) C17—H17B 0.9900
C9—H9A 0.9500 C1—H1A 0.9900
N2—C14 1.469 (3) C1—H1B 0.9900
N2—C16 1.474 (3) N4—O4 1.238 (3)
C4—N1—C13 119.38 (16) C1—C3—C2 60.70 (16)
C4—N1—C3 120.52 (15) N1—C3—H3A 115.5
C13—N1—C3 120.07 (15) C1—C3—H3A 115.5
C6—O2—H18 109.5 C2—C3—H3A 115.5
C9—C8—C13 118.03 (17) N2—C14—C15 110.91 (17)
C9—C8—C7 120.60 (17) N2—C14—H14A 109.5
C13—C8—C7 121.36 (18) C15—C14—H14A 109.5
N1—C13—C8 119.20 (16) N2—C14—H14B 109.5
N1—C13—C12 120.02 (17) C15—C14—H14B 109.5
C8—C13—C12 120.77 (17) H14A—C14—H14B 108.0
C12—C11—N2 122.48 (18) C3—C2—C1 59.64 (15)
C12—C11—C10 116.46 (17) C3—C2—H2A 117.8
N2—C11—C10 120.98 (17) C1—C2—H2A 117.8
C4—C5—C7 120.37 (17) C3—C2—H2B 117.8
C4—C5—C6 117.68 (18) C1—C2—H2B 117.8
C7—C5—C6 121.95 (18) H2A—C2—H2B 114.9
C11—C12—C13 120.90 (18) N3—C15—C14 110.6 (2)
C11—C12—H12A 119.6 N3—C15—H15A 109.5
C13—C12—H12A 119.6 C14—C15—H15A 109.5
C10—C9—C8 119.97 (18) N3—C15—H15B 109.5
C10—C9—H9A 120.0 C14—C15—H15B 109.5
C8—C9—H9A 120.0 H15A—C15—H15B 108.1
C11—N2—C14 117.59 (15) N2—C16—C17 111.9 (2)
C11—N2—C16 117.81 (17) N2—C16—H16A 109.2
C14—N2—C16 111.17 (17) C17—C16—H16A 109.2
O3—C7—C5 123.16 (18) N2—C16—H16B 109.2
O3—C7—C8 121.43 (18) C17—C16—H16B 109.2
C5—C7—C8 115.41 (17) H16A—C16—H16B 107.9
C9—C10—F1 117.51 (17) N3—C17—C16 108.62 (19)
C9—C10—C11 123.63 (18) N3—C17—H17A 110.0
F1—C10—C11 118.81 (17) C16—C17—H17A 110.0
N1—C4—C5 124.20 (18) N3—C17—H17B 110.0
N1—C4—H4A 117.9 C16—C17—H17B 110.0
C5—C4—H4A 117.9 H17A—C17—H17B 108.3
O1—C6—O2 121.06 (19) C3—C1—C2 59.66 (15)
O1—C6—C5 123.8 (2) C3—C1—H1A 117.8
O2—C6—C5 115.15 (19) C2—C1—H1A 117.8
N4—N3—C15 119.31 (19) C3—C1—H1B 117.8
N4—N3—C17 125.3 (2) C2—C1—H1B 117.8
C15—N3—C17 115.35 (18) H1A—C1—H1B 114.9
N1—C3—C1 119.44 (18) O4—N4—N3 115.6 (2)
N1—C3—C2 119.07 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H18···O3 0.84 1.78 2.562 (2) 153
C4—H4A···O1 0.95 2.48 2.812 (3) 101
C15—H15A···O2i 0.99 2.50 3.405 (3) 151
C15—H15B···O3ii 0.99 2.51 3.385 (3) 147
C16—H16A···O1iii 0.99 2.60 3.264 (3) 125
C16—H16B···F1 0.99 2.14 2.852 (3) 128
C17—H17B···O4 0.99 2.30 2.692 (3) 102

Symmetry codes: (i) x+1, y+1, z+1; (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2160).

References

  1. Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Drevenšek, P., Leban, I., Turel, I., Giester, G. & Tillmanns, E. (2003). Acta Cryst. C59, m376–m378. [DOI] [PubMed]
  3. Li, X.-W., Zhi, F., Shen, J.-H. & Hu, Y.-Q. (2005). Acta Cryst. E61, o2235–o2236.
  4. Lou, B., Boström, D. & Velaga, S. P. (2007). Acta Cryst. C63, o731–o733. [DOI] [PubMed]
  5. Neu, H. C. (1987). Am. J. Med.82, 395-404. [PubMed]
  6. Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  7. Sekido, K., Okamoto, K. & Hirokawa, S. (1985). Acta Cryst. C41, 741–743.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Turel, I., Leban, I., Zupancic, M., Bukovec, P. & Gruber, K. (1996). Acta Cryst. C52, 2443–2445.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029729/fb2160sup1.cif

e-65-o2053-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029729/fb2160Isup2.hkl

e-65-o2053-Isup2.hkl (178KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES