Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 15;65(Pt 8):o1869. doi: 10.1107/S1600536809026373

(4-Fluoro­phen­yl)[6-(2-fur­yl)-7-nitro-2,3,4,6,7,8-hexa­hydro-1H-pyrido[1,2-a]pyrimidin-9-yl]methanone

Muhammad Yaqub a,*, Zahid Shafiq a, Ashfaq M Qureshi a, Muhammad Najam-ul-Haq a
PMCID: PMC2977271  PMID: 21583564

Abstract

In the title compound, C19H18FN3O4, the fused pyridine and pyrimidine rings adopt half-chair conformations. The structure displays intra­molecular N—H⋯O and inter­molecular N—H⋯F hydrogen bonding.

Related literature

For the use of cyclic 1,1-enediamines in the synthesis of a wide variety of fused heterocycles, see: Huang & Wang, (1994); Yu et al. (2006); Yaqub et al. (2008). For related structures, see: Yu et al. (2007).graphic file with name e-65-o1869-scheme1.jpg

Experimental

Crystal data

  • C19H18FN3O4

  • M r = 371.36

  • Orthorhombic, Inline graphic

  • a = 15.375 (3) Å

  • b = 7.0706 (14) Å

  • c = 15.255 (3) Å

  • V = 1658.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.38 × 0.25 × 0.19 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.958, T max = 0.979

  • 3533 measured reflections

  • 1943 independent reflections

  • 1657 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.066

  • S = 1.01

  • 1943 reflections

  • 244 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026373/pv2155sup1.cif

e-65-o1869-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026373/pv2155Isup2.hkl

e-65-o1869-Isup2.hkl (95.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.88 1.86 2.579 (3) 138
N1—H1A⋯F1i 0.88 2.60 3.130 (3) 120

Symmetry code: (i) Inline graphic.

Acknowledgments

The Institute of Chemistry, Chinese Academy of Science, Beijing, is thanked for providing the single-crystal facility and the Higher Education Commission, Islamabad, Pakistan, is gratefully acknowledged for providing financial support.

supplementary crystallographic information

Comment

Cyclic 1,1-enediamines known as heterocyclic ketene aminals (HKAs) have been exploited in different synthetic methodologies to build a wide variety of fused heterocycles (Huang & Wang, 1994; Yu, et al., 2006; Yaqub, et al., 2008). The title compound, (I), was prepared by treating nitro derivative of Baylis-Hillman acetates with heterocyclic ketene aminals. The structure of (I) is presented in this article.

The stucture of the title compound, (I), is shown in Fig. 1. The fused pyridyl (N2/C4—C8) and pyrimidyl (N1/N2/C1—C3/C8) rings adopt half-chair conformations, C5 and N2 atoms lie 0.596 (4) and 0.640 (5) Å, respectively, out of the planes formed by the remaining ring atoms. The structure displays an intramolecular (N—H···O) and an intermolecular (N—H···F) hydrogen bonding (details are in Table 1). The molecular dimensions in (I) are in accord with a the corrsponding dimensions reported for a structure very closely related to (I) (Yu, et al., 2007).

Experimental

(E)-2-Nitro-3-(2-furanyl)allyl acetate 2 (0.15 g, 0.71 mmol) and ketene aminal 2 (0.146 g, 0.71 mmol) were stirred in 20 ml of dichloromethane (DCM) at 273 K for one hour. Temperature was allowed to rise up to room temperature and stirring was further continued for 6 hrs. Solvent was evaporated and residue was passed through the column. The elution was carried out by petroleum ether: ethyl acetate (3:1) to get the title compound as a light yellow solid. The single crystals of (I) were grown in dichloromethane - petroleum ether (1:5) system at room temperature by slow evaporation. Yield: 62% (0.16 g), m.p. 417–418 K (lit. m.p. 418–419 K).

Refinement

An absolute structure could not be established by anomalous dispersion effects because the crystal consists of light atoms only. Therefore, Friedel pairs (1590) were merged. All H atoms were positioned geometrically, with N—H = 0.88 and C—H = 0.95, 0.99 and 1.00 Å, for aromatic, methylene and methine H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

The formation of the title compound.

Crystal data

C19H18FN3O4 F(000) = 776
Mr = 371.36 Dx = 1.487 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 3533 reflections
a = 15.375 (3) Å θ = 2.7–27.4°
b = 7.0706 (14) Å µ = 0.11 mm1
c = 15.255 (3) Å T = 173 K
V = 1658.3 (6) Å3 Plate, yellow
Z = 4 0.38 × 0.25 × 0.19 mm

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer 1943 independent reflections
Radiation source: rotating anode 1657 reflections with I > 2σ(I)
graphite Rint = 0.020
ω scans at fixed χ = 45° θmax = 27.4°, θmin = 2.7°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −19→19
Tmin = 0.958, Tmax = 0.979 k = −9→9
3533 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0225P)2] where P = (Fo2 + 2Fc2)/3
1943 reflections (Δ/σ)max < 0.001
244 parameters Δρmax = 0.19 e Å3
1 restraint Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.Flack parameter cannot be determined correctly because the crystal consists of light atoms only, and because the radiation is MoKα. In the final stage of structure refinement with SHELXL, MERG 3 card was used, i.e. Friedel pairs (1590) were merged

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 −0.27105 (10) 0.6451 (2) 0.11441 (12) 0.0346 (4)
O1 −0.16942 (12) −0.3771 (3) 0.52236 (12) 0.0270 (5)
O2 0.06546 (13) 0.0877 (3) 0.48554 (15) 0.0412 (6)
O3 −0.04035 (13) 0.2693 (3) 0.52399 (15) 0.0336 (5)
O4 0.03402 (12) 0.0794 (3) 0.16274 (12) 0.0249 (4)
N1 0.08544 (14) −0.2010 (3) 0.25757 (16) 0.0216 (5)
H1A 0.0896 −0.1296 0.2105 0.026*
N2 0.01886 (14) −0.2546 (3) 0.39083 (16) 0.0188 (5)
N3 −0.01178 (15) 0.1242 (3) 0.49235 (15) 0.0225 (5)
C1 0.14602 (18) −0.3583 (4) 0.2649 (2) 0.0249 (6)
H1B 0.2037 −0.3107 0.2836 0.030*
H1C 0.1528 −0.4201 0.2071 0.030*
C2 0.1128 (2) −0.5011 (4) 0.3313 (2) 0.0263 (7)
H2A 0.0632 −0.5723 0.3062 0.032*
H2B 0.1595 −0.5923 0.3459 0.032*
C3 0.08430 (18) −0.3984 (4) 0.41276 (18) 0.0223 (6)
H3A 0.0594 −0.4898 0.4551 0.027*
H3B 0.1352 −0.3371 0.4406 0.027*
C4 −0.04462 (16) −0.2163 (3) 0.45963 (18) 0.0174 (6)
H4A −0.0171 −0.2410 0.5179 0.021*
C5 −0.07782 (16) −0.0134 (3) 0.45763 (17) 0.0163 (5)
H5A −0.1308 −0.0059 0.4956 0.020*
C6 −0.10374 (16) 0.0431 (3) 0.36448 (17) 0.0172 (6)
H6A −0.1581 −0.0235 0.3484 0.021*
H6B −0.1156 0.1806 0.3630 0.021*
C7 −0.03447 (17) −0.0028 (4) 0.29753 (17) 0.0177 (5)
C8 0.02392 (17) −0.1551 (3) 0.31586 (17) 0.0162 (5)
C9 −0.12129 (16) −0.3457 (3) 0.44889 (18) 0.0180 (5)
C10 −0.24018 (19) −0.4814 (4) 0.4965 (2) 0.0303 (7)
H10A −0.2853 −0.5234 0.5342 0.036*
C11 −0.23634 (19) −0.5153 (4) 0.4105 (2) 0.0270 (7)
H11A −0.2773 −0.5845 0.3768 0.032*
C12 −0.15887 (17) −0.4277 (4) 0.37916 (19) 0.0235 (6)
H12A −0.1380 −0.4273 0.3205 0.028*
C13 −0.02627 (17) 0.0996 (3) 0.21865 (17) 0.0173 (6)
C14 −0.09337 (16) 0.2471 (3) 0.19533 (18) 0.0170 (6)
C15 −0.18225 (17) 0.2120 (3) 0.20063 (19) 0.0208 (6)
H15A −0.2018 0.0944 0.2234 0.025*
C16 −0.24299 (18) 0.3450 (4) 0.17349 (19) 0.0240 (6)
H16A −0.3036 0.3198 0.1763 0.029*
C17 −0.21204 (18) 0.5148 (4) 0.14232 (19) 0.0232 (6)
C18 −0.12529 (18) 0.5575 (4) 0.13609 (18) 0.0236 (6)
H18A −0.1065 0.6767 0.1145 0.028*
C19 −0.06578 (18) 0.4215 (4) 0.16217 (18) 0.0212 (6)
H19A −0.0053 0.4472 0.1575 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0346 (10) 0.0353 (9) 0.0338 (10) 0.0157 (8) −0.0003 (9) 0.0075 (8)
O1 0.0294 (11) 0.0320 (11) 0.0195 (11) −0.0085 (9) 0.0055 (9) −0.0003 (9)
O2 0.0187 (11) 0.0488 (14) 0.0560 (16) −0.0057 (10) 0.0028 (11) −0.0223 (12)
O3 0.0376 (12) 0.0181 (10) 0.0451 (15) 0.0001 (9) −0.0059 (11) −0.0077 (9)
O4 0.0243 (11) 0.0305 (10) 0.0200 (10) 0.0058 (9) 0.0057 (9) 0.0059 (9)
N1 0.0236 (13) 0.0221 (11) 0.0193 (12) 0.0065 (10) 0.0051 (10) 0.0054 (10)
N2 0.0193 (11) 0.0184 (10) 0.0187 (11) 0.0032 (10) 0.0001 (10) 0.0020 (9)
N3 0.0262 (14) 0.0234 (12) 0.0178 (12) −0.0046 (11) −0.0004 (10) 0.0000 (10)
C1 0.0230 (14) 0.0254 (14) 0.0263 (15) 0.0098 (13) 0.0049 (13) −0.0002 (13)
C2 0.0310 (16) 0.0190 (12) 0.0291 (16) 0.0051 (13) 0.0006 (13) 0.0019 (12)
C3 0.0240 (15) 0.0207 (13) 0.0222 (15) 0.0033 (12) 0.0003 (12) 0.0072 (12)
C4 0.0191 (13) 0.0214 (13) 0.0117 (13) −0.0014 (11) 0.0027 (12) 0.0033 (11)
C5 0.0142 (12) 0.0178 (12) 0.0169 (13) −0.0022 (11) 0.0006 (11) −0.0018 (11)
C6 0.0161 (13) 0.0148 (12) 0.0206 (15) 0.0013 (11) 0.0015 (12) 0.0011 (11)
C7 0.0198 (13) 0.0157 (12) 0.0176 (14) −0.0006 (12) 0.0006 (11) −0.0014 (10)
C8 0.0154 (13) 0.0165 (12) 0.0167 (13) −0.0046 (11) −0.0003 (11) −0.0011 (11)
C9 0.0216 (13) 0.0151 (12) 0.0173 (13) 0.0035 (11) 0.0029 (12) 0.0015 (11)
C10 0.0283 (17) 0.0289 (15) 0.0338 (19) −0.0100 (14) 0.0062 (14) 0.0011 (14)
C11 0.0261 (17) 0.0195 (13) 0.0354 (19) −0.0037 (13) −0.0020 (14) −0.0056 (13)
C12 0.0261 (16) 0.0231 (13) 0.0212 (15) 0.0003 (12) 0.0005 (13) −0.0023 (12)
C13 0.0184 (13) 0.0179 (13) 0.0154 (13) −0.0012 (11) −0.0012 (11) −0.0020 (11)
C14 0.0213 (14) 0.0180 (11) 0.0119 (12) 0.0010 (12) 0.0004 (11) −0.0020 (10)
C15 0.0242 (14) 0.0189 (13) 0.0194 (14) −0.0026 (12) −0.0022 (13) 0.0008 (12)
C16 0.0202 (14) 0.0304 (14) 0.0214 (16) 0.0007 (13) −0.0016 (12) −0.0026 (12)
C17 0.0300 (16) 0.0249 (13) 0.0147 (13) 0.0126 (12) 0.0002 (12) 0.0014 (11)
C18 0.0322 (16) 0.0200 (13) 0.0185 (15) 0.0025 (12) 0.0049 (12) 0.0047 (12)
C19 0.0233 (15) 0.0231 (13) 0.0171 (14) −0.0001 (12) 0.0035 (12) −0.0002 (12)

Geometric parameters (Å, °)

F1—C17 1.361 (3) C5—C6 1.529 (4)
O1—C9 1.361 (3) C5—H5A 1.0000
O1—C10 1.372 (3) C6—C7 1.511 (3)
O2—N3 1.220 (3) C6—H6A 0.9900
O3—N3 1.216 (3) C6—H6B 0.9900
O4—C13 1.268 (3) C7—C13 1.410 (4)
N1—C8 1.338 (3) C7—C8 1.430 (3)
N1—C1 1.455 (3) C9—C12 1.342 (4)
N1—H1A 0.8800 C10—C11 1.334 (4)
N2—C8 1.345 (3) C10—H10A 0.9500
N2—C4 1.458 (3) C11—C12 1.425 (4)
N2—C3 1.469 (3) C11—H11A 0.9500
N3—C5 1.503 (3) C12—H12A 0.9500
C1—C2 1.518 (4) C13—C14 1.509 (4)
C1—H1B 0.9900 C14—C15 1.391 (3)
C1—H1C 0.9900 C14—C19 1.399 (3)
C2—C3 1.505 (4) C15—C16 1.389 (4)
C2—H2A 0.9900 C15—H15A 0.9500
C2—H2B 0.9900 C16—C17 1.376 (4)
C3—H3A 0.9900 C16—H16A 0.9500
C3—H3B 0.9900 C17—C18 1.371 (4)
C4—C9 1.501 (3) C18—C19 1.385 (4)
C4—C5 1.523 (3) C18—H18A 0.9500
C4—H4A 1.0000 C19—H19A 0.9500
C9—O1—C10 106.4 (2) C7—C6—H6B 109.0
C8—N1—C1 125.9 (2) C5—C6—H6B 109.0
C8—N1—H1A 117.0 H6A—C6—H6B 107.8
C1—N1—H1A 117.0 C13—C7—C8 119.8 (2)
C8—N2—C4 123.6 (2) C13—C7—C6 122.0 (2)
C8—N2—C3 121.1 (2) C8—C7—C6 118.2 (2)
C4—N2—C3 115.0 (2) N1—C8—N2 118.6 (2)
O3—N3—O2 124.4 (2) N1—C8—C7 119.8 (2)
O3—N3—C5 116.2 (2) N2—C8—C7 121.6 (2)
O2—N3—C5 119.4 (2) C12—C9—O1 110.4 (2)
N1—C1—C2 110.2 (2) C12—C9—C4 133.5 (3)
N1—C1—H1B 109.6 O1—C9—C4 115.9 (2)
C2—C1—H1B 109.6 C11—C10—O1 110.1 (3)
N1—C1—H1C 109.6 C11—C10—H10A 124.9
C2—C1—H1C 109.6 O1—C10—H10A 124.9
H1B—C1—H1C 108.1 C10—C11—C12 106.8 (3)
C3—C2—C1 109.1 (2) C10—C11—H11A 126.6
C3—C2—H2A 109.9 C12—C11—H11A 126.6
C1—C2—H2A 109.9 C9—C12—C11 106.3 (3)
C3—C2—H2B 109.9 C9—C12—H12A 126.8
C1—C2—H2B 109.9 C11—C12—H12A 126.8
H2A—C2—H2B 108.3 O4—C13—C7 125.6 (2)
N2—C3—C2 110.2 (2) O4—C13—C14 114.8 (2)
N2—C3—H3A 109.6 C7—C13—C14 119.7 (2)
C2—C3—H3A 109.6 C15—C14—C19 118.4 (2)
N2—C3—H3B 109.6 C15—C14—C13 122.3 (2)
C2—C3—H3B 109.6 C19—C14—C13 119.1 (2)
H3A—C3—H3B 108.1 C16—C15—C14 121.5 (2)
N2—C4—C9 109.5 (2) C16—C15—H15A 119.2
N2—C4—C5 112.6 (2) C14—C15—H15A 119.2
C9—C4—C5 108.0 (2) C17—C16—C15 117.5 (3)
N2—C4—H4A 108.9 C17—C16—H16A 121.3
C9—C4—H4A 108.9 C15—C16—H16A 121.3
C5—C4—H4A 108.9 F1—C17—C18 118.6 (2)
N3—C5—C4 112.1 (2) F1—C17—C16 117.9 (2)
N3—C5—C6 109.5 (2) C18—C17—C16 123.5 (3)
C4—C5—C6 110.6 (2) C17—C18—C19 118.0 (2)
N3—C5—H5A 108.2 C17—C18—H18A 121.0
C4—C5—H5A 108.2 C19—C18—H18A 121.0
C6—C5—H5A 108.2 C18—C19—C14 121.0 (2)
C7—C6—C5 112.9 (2) C18—C19—H19A 119.5
C7—C6—H6A 109.0 C14—C19—H19A 119.5
C5—C6—H6A 109.0
C8—N1—C1—C2 18.4 (4) C6—C7—C8—N2 −0.8 (4)
N1—C1—C2—C3 −47.0 (3) C10—O1—C9—C12 −0.6 (3)
C8—N2—C3—C2 −36.6 (3) C10—O1—C9—C4 173.9 (2)
C4—N2—C3—C2 149.5 (2) N2—C4—C9—C12 −30.1 (4)
C1—C2—C3—N2 56.1 (3) C5—C4—C9—C12 92.8 (3)
C8—N2—C4—C9 96.3 (3) N2—C4—C9—O1 156.9 (2)
C3—N2—C4—C9 −90.0 (3) C5—C4—C9—O1 −80.1 (3)
C8—N2—C4—C5 −23.8 (3) C9—O1—C10—C11 0.5 (3)
C3—N2—C4—C5 149.9 (2) O1—C10—C11—C12 −0.1 (3)
O3—N3—C5—C4 −153.2 (2) O1—C9—C12—C11 0.5 (3)
O2—N3—C5—C4 28.6 (3) C4—C9—C12—C11 −172.7 (3)
O3—N3—C5—C6 83.7 (3) C10—C11—C12—C9 −0.3 (3)
O2—N3—C5—C6 −94.6 (3) C8—C7—C13—O4 −5.9 (4)
N2—C4—C5—N3 −74.9 (3) C6—C7—C13—O4 174.2 (2)
C9—C4—C5—N3 164.1 (2) C8—C7—C13—C14 173.9 (2)
N2—C4—C5—C6 47.7 (3) C6—C7—C13—C14 −6.1 (4)
C9—C4—C5—C6 −73.3 (3) O4—C13—C14—C15 132.0 (3)
N3—C5—C6—C7 74.7 (2) C7—C13—C14—C15 −47.8 (4)
C4—C5—C6—C7 −49.4 (3) O4—C13—C14—C19 −44.1 (3)
C5—C6—C7—C13 −153.3 (2) C7—C13—C14—C19 136.1 (3)
C5—C6—C7—C8 26.7 (3) C19—C14—C15—C16 0.4 (4)
C1—N1—C8—N2 3.7 (4) C13—C14—C15—C16 −175.7 (3)
C1—N1—C8—C7 −176.4 (2) C14—C15—C16—C17 −1.0 (4)
C4—N2—C8—N1 179.2 (2) C15—C16—C17—F1 179.1 (2)
C3—N2—C8—N1 5.9 (4) C15—C16—C17—C18 0.7 (4)
C4—N2—C8—C7 −0.7 (4) F1—C17—C18—C19 −178.0 (2)
C3—N2—C8—C7 −174.0 (2) C16—C17—C18—C19 0.4 (4)
C13—C7—C8—N1 −0.7 (4) C17—C18—C19—C14 −1.1 (4)
C6—C7—C8—N1 179.2 (2) C15—C14—C19—C18 0.7 (4)
C13—C7—C8—N2 179.2 (2) C13—C14—C19—C18 176.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O4 0.88 1.86 2.579 (3) 138
N1—H1A···F1i 0.88 2.60 3.130 (3) 120

Symmetry codes: (i) x+1/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2155).

References

  1. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  2. Huang, Z.-T. & Wang, M.-X. (1994). Heterocycles, 37, 1233–1262.
  3. Rigaku (2001). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Yaqub, M., Yu, C.-Y., Jia, Y.-M. & Huang, Z.-T. (2008). Synlett, pp. 1357–1360.
  6. Yu, C.-Y., Yang, P.-H., Zhao, M.-X. & Huang, Z.-T. (2006). Synlett pp. 1835–1840.
  7. Yu, C.-Y., Yuan, X.-N. & Huang, Z.-T. (2007). Acta Cryst. E63, o3186.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026373/pv2155sup1.cif

e-65-o1869-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026373/pv2155Isup2.hkl

e-65-o1869-Isup2.hkl (95.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES