Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 25;65(Pt 8):m985. doi: 10.1107/S1600536809028530

[μ-14,29-Di-tert-butyl-3,10,18,25-tetra­azatpenta­cyclo­[25.3.1.112,16.04,9.019,24]dotriaconta-1(31),4,6,8,12(32),14,16,19,21,23,27,29-dodeca­ene-31,32-diol­ato]bis­[(nitrato-κ2 O,O′)zinc(II)]

Li-Jing Fan a, Jian-Fang Ma a,*, Bo Liu a
PMCID: PMC2977276  PMID: 21583427

Abstract

In the title centrosymmetric dinuclear zinc(II) complex, [Zn2(C36H42N4O2)(NO3)2], the ZnII atom has a distorted octa­hedral geometry, defined by two N atoms and two O atoms from the macrocyclic ligand and two O atoms from a chelating nitrate anion and are bridged by two phenolate O atoms, forming a four-membered Zn2O2 ring.

Related literature

For general background to the biochemistry of zinc(II) compounds, see: Bazzicalupi et al. (1997); Burley et al. (1990); Lipscomb & Straeter (1996); Roderick & Mathews (1993). For related structures, see: Dutta et al. (2005). For further synthetic details, see: Fan et al. (2009).graphic file with name e-65-0m985-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C36H42N4O2)(NO3)2]

  • M r = 817.20

  • Monoclinic, Inline graphic

  • a = 13.7149 (8) Å

  • b = 18.0691 (10) Å

  • c = 7.3523 (3) Å

  • β = 101.110 (5)°

  • V = 1787.87 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 293 K

  • 0.45 × 0.25 × 0.20 mm

Data collection

  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.661, T max = 0.752

  • 15034 measured reflections

  • 4340 independent reflections

  • 1698 reflections with I > 2σ(I)

  • R int = 0.099

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.065

  • S = 0.91

  • 4340 reflections

  • 241 parameters

  • 357 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028530/hy2213sup1.cif

e-65-0m985-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028530/hy2213Isup2.hkl

e-65-0m985-Isup2.hkl (208.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn1—N1 2.081 (4)
Zn1—N2 2.102 (3)
Zn1—O1 2.264 (3)
Zn1—O2 2.243 (3)
Zn1—O4 2.019 (2)
Zn1—O4i 2.043 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the National Natural Science Foundation of China (grant No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05–0320), the Fok Ying Tung Education Foundation and the Analysis and Testing Foundation of Northeast Normal University for support.

supplementary crystallographic information

Comment

Dinuclear zinc(II) compounds have attracted much interest as a result of their significance in biological systems (Burley et al., 1990; Roderick & Mathews, 1993). In addition, some synthetic dinuclear zinc(II) compounds are found to have functions in dephosphorylation (Bazzicalupi et al., 1997). As part of our studies in this area, the title compound, a new dinuclear zinc(II) compound, has been synthesized and its structure is reported here (Fig. 1).

In the title centrosymmetric dinuclear zinc(II) compound, each of the two ZnII atoms has a distorted octahedral geometry, defined by two N atoms and two O atoms from the macrocyclic (C36H42N4O2) ligand and two O atoms from a chelating nitrate anion. The two Zn atoms are bridged by two phenolate O atoms, forming a four-membered Zn2O2 ring. The Zn—O and Zn—N distances are normal (Table 1) (Dutta et al., 2005).

Experimental

The title compound was prepared by a reaction between the macrocyclic ligand C36H44N4O2 (H2L), which was synthesized according to the published procedure (Fan et al., 2009), and zinc nitrate. A mixture of H2L (0.135 g, 0.25 mmol) and Zn(NO3)2.6H2O (0.149 g, 0.5 mmol) in ethanol (20 ml) was heated with stirring to yield a clear pale yellow solution. Filtration and cooling to room temperature resulted in the formation of a crystalline precipitate. Recrystallization by slow evaporation of an ethanol solution of the compound resulted in well formed yellow blocks of the title compound (yield 52%).

Refinement

N-bonded H atoms were located in a difference map and their coordinates were freely refined, with Uiso fixed. C-bonded H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2(or 1.5 for methyl)Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displaceement ellipsoids are draw at the 30% probability level. H atoms have been omitted for clarity.

Crystal data

[Zn2(C36H42N4O2)(NO3)2] F(000) = 848
Mr = 817.20 Dx = 1.518 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2682 reflections
a = 13.7149 (8) Å θ = 1.9–29.2°
b = 18.0691 (10) Å µ = 1.40 mm1
c = 7.3523 (3) Å T = 293 K
β = 101.110 (5)° Block, yellow
V = 1787.87 (16) Å3 0.45 × 0.25 × 0.20 mm
Z = 2

Data collection

Oxford Diffraction Gemini R Ultra diffractometer 4340 independent reflections
Radiation source: fine-focus sealed tube 1698 reflections with I > 2σ(I)
graphite Rint = 0.099
Detector resolution: 10.0 pixels mm-1 θmax = 29.3°, θmin = 1.9°
ω scans h = −16→17
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) k = −24→24
Tmin = 0.661, Tmax = 0.752 l = −8→10
15034 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065 H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.01P)2] where P = (Fo2 + 2Fc2)/3
4340 reflections (Δ/σ)max = 0.001
241 parameters Δρmax = 0.66 e Å3
357 restraints Δρmin = −0.45 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2727 (3) 0.6078 (2) 0.1435 (5) 0.0401 (11)
C2 0.1724 (3) 0.6150 (2) 0.1476 (5) 0.0486 (12)
H2 0.1254 0.5897 0.0621 0.058*
C3 0.1424 (3) 0.6598 (2) 0.2783 (5) 0.0506 (12)
H3 0.0753 0.6651 0.2807 0.061*
C4 0.2122 (4) 0.6965 (2) 0.4047 (5) 0.0469 (12)
H4 0.1920 0.7266 0.4931 0.056*
C5 0.3108 (3) 0.6893 (2) 0.4022 (5) 0.0404 (11)
H5 0.3572 0.7141 0.4900 0.048*
C6 0.3426 (3) 0.6460 (2) 0.2723 (5) 0.0332 (10)
C7 0.5006 (3) 0.4041 (2) −0.4386 (4) 0.0334 (11)
H7A 0.4997 0.3731 −0.5467 0.040*
H7B 0.5382 0.4484 −0.4537 0.040*
C8 0.3954 (3) 0.4258 (2) −0.4294 (4) 0.0296 (9)
C9 0.3152 (3) 0.3961 (2) −0.5486 (5) 0.0386 (10)
H9 0.3268 0.3600 −0.6320 0.046*
C10 0.2177 (3) 0.4175 (3) −0.5504 (5) 0.0427 (10)
C11 0.2043 (3) 0.4716 (2) −0.4249 (5) 0.0464 (11)
H11 0.1400 0.4879 −0.4243 0.056*
C12 0.2823 (3) 0.5029 (2) −0.2995 (5) 0.0375 (11)
C13 0.3800 (3) 0.4796 (2) −0.3002 (5) 0.0322 (10)
C14 0.2598 (3) 0.5610 (3) −0.1703 (5) 0.0584 (12)
H14A 0.2707 0.6085 −0.2244 0.070*
H14B 0.1894 0.5578 −0.1684 0.070*
C15 0.1319 (3) 0.3808 (3) −0.6848 (6) 0.0525 (12)
C16 0.1355 (4) 0.2980 (3) −0.6507 (6) 0.0896 (16)
H16A 0.1987 0.2791 −0.6668 0.134*
H16B 0.0835 0.2744 −0.7372 0.134*
H16C 0.1267 0.2882 −0.5266 0.134*
C17 0.1414 (3) 0.3929 (2) −0.8848 (5) 0.0749 (14)
H17A 0.2044 0.3745 −0.9031 0.112*
H17B 0.1367 0.4448 −0.9128 0.112*
H17C 0.0889 0.3670 −0.9653 0.112*
C18 0.0325 (3) 0.4077 (3) −0.6600 (6) 0.0918 (16)
H18A 0.0253 0.3993 −0.5344 0.138*
H18B −0.0185 0.3813 −0.7427 0.138*
H18C 0.0268 0.4596 −0.6869 0.138*
N1 0.3096 (3) 0.5622 (2) 0.0108 (5) 0.0479 (11)
N2 0.4476 (3) 0.63682 (17) 0.2695 (4) 0.0315 (9)
N3 0.5574 (4) 0.6847 (2) −0.1030 (5) 0.0470 (12)
O1 0.6025 (2) 0.63223 (18) −0.0177 (4) 0.0545 (8)
O2 0.4639 (3) 0.68288 (18) −0.1261 (4) 0.0575 (10)
O3 0.5992 (3) 0.73463 (18) −0.1672 (4) 0.0714 (11)
O4 0.4592 (2) 0.50597 (14) −0.1821 (3) 0.0309 (7)
Zn1 0.46177 (4) 0.57671 (3) 0.03129 (6) 0.03462 (15)
H1N 0.296 (3) 0.5176 (13) 0.031 (5) 0.052*
H2N 0.475 (3) 0.6800 (13) 0.282 (5) 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.034 (3) 0.050 (3) 0.040 (2) 0.006 (2) 0.017 (2) −0.011 (2)
C2 0.037 (3) 0.065 (3) 0.045 (2) 0.003 (2) 0.012 (2) −0.008 (2)
C3 0.038 (3) 0.063 (3) 0.055 (3) 0.006 (2) 0.019 (2) −0.010 (2)
C4 0.046 (3) 0.052 (3) 0.045 (2) 0.011 (3) 0.014 (2) −0.014 (2)
C5 0.038 (3) 0.045 (3) 0.039 (2) 0.003 (2) 0.010 (2) −0.010 (2)
C6 0.029 (3) 0.041 (3) 0.032 (2) 0.009 (2) 0.012 (2) 0.0007 (19)
C7 0.036 (3) 0.039 (3) 0.026 (2) 0.004 (2) 0.0078 (19) −0.0020 (19)
C8 0.030 (2) 0.033 (2) 0.0254 (19) −0.003 (2) 0.0060 (18) −0.003 (2)
C9 0.041 (2) 0.044 (2) 0.0300 (19) 0.001 (2) 0.0052 (19) −0.0112 (18)
C10 0.033 (2) 0.052 (2) 0.041 (2) −0.005 (2) 0.0022 (18) −0.013 (2)
C11 0.031 (2) 0.063 (3) 0.043 (2) 0.003 (2) 0.004 (2) −0.010 (2)
C12 0.035 (2) 0.042 (2) 0.034 (2) 0.004 (2) 0.003 (2) −0.0104 (19)
C13 0.031 (2) 0.038 (2) 0.028 (2) 0.001 (2) 0.007 (2) −0.0019 (19)
C14 0.043 (3) 0.078 (3) 0.051 (2) 0.020 (2) 0.001 (2) −0.018 (2)
C15 0.034 (3) 0.061 (3) 0.061 (2) 0.001 (2) 0.006 (2) −0.019 (2)
C16 0.083 (3) 0.087 (3) 0.088 (3) −0.027 (3) −0.011 (3) −0.007 (3)
C17 0.064 (3) 0.089 (3) 0.062 (3) −0.011 (3) −0.013 (2) −0.013 (3)
C18 0.048 (3) 0.120 (4) 0.101 (3) −0.012 (3) −0.002 (3) −0.055 (3)
N1 0.032 (2) 0.065 (3) 0.046 (2) 0.000 (3) 0.0058 (19) −0.017 (3)
N2 0.037 (3) 0.028 (2) 0.0292 (18) 0.004 (2) 0.0064 (18) −0.0054 (17)
N3 0.071 (4) 0.031 (3) 0.041 (2) 0.005 (3) 0.018 (3) −0.005 (2)
O1 0.058 (2) 0.046 (2) 0.062 (2) −0.0080 (17) 0.0188 (18) 0.0047 (17)
O2 0.055 (3) 0.063 (3) 0.0534 (19) 0.003 (2) 0.007 (2) −0.0025 (17)
O3 0.098 (3) 0.038 (2) 0.090 (2) −0.012 (2) 0.046 (2) 0.0090 (19)
O4 0.032 (2) 0.0326 (18) 0.0283 (15) 0.0044 (15) 0.0067 (14) −0.0065 (13)
Zn1 0.0343 (3) 0.0372 (3) 0.0319 (2) 0.0038 (4) 0.0052 (2) −0.0047 (3)

Geometric parameters (Å, °)

C1—C2 1.388 (5) C14—H14A 0.9700
C1—C6 1.393 (5) C14—H14B 0.9700
C1—N1 1.441 (5) C15—C18 1.490 (5)
C2—C3 1.378 (5) C15—C16 1.516 (6)
C2—H2 0.9300 C15—C17 1.517 (5)
C3—C4 1.369 (5) C16—H16A 0.9600
C3—H3 0.9300 C16—H16B 0.9600
C4—C5 1.363 (5) C16—H16C 0.9600
C4—H4 0.9300 C17—H17A 0.9600
C5—C6 1.368 (5) C17—H17B 0.9600
C5—H5 0.9300 C17—H17C 0.9600
C6—N2 1.453 (5) C18—H18A 0.9600
C7—N2i 1.502 (4) C18—H18B 0.9600
C7—C8 1.510 (5) C18—H18C 0.9600
C7—H7A 0.9700 Zn1—N1 2.081 (4)
C7—H7B 0.9700 N1—H1N 0.845 (19)
C8—C9 1.376 (5) N2—C7i 1.502 (4)
C8—C13 1.404 (5) Zn1—N2 2.102 (3)
C9—C10 1.390 (5) N2—H2N 0.863 (19)
C9—H9 0.9300 N3—O3 1.212 (4)
C10—C11 1.380 (5) N3—O1 1.234 (4)
C10—C15 1.534 (5) N3—O2 1.262 (5)
C11—C12 1.391 (5) Zn1—O1 2.264 (3)
C11—H11 0.9300 Zn1—O2 2.243 (3)
C12—C13 1.405 (5) Zn1—O4 2.019 (2)
C12—C14 1.487 (5) Zn1—O4i 2.043 (2)
C13—O4 1.341 (4) Zn1—Zn1i 3.0302 (10)
C14—N1 1.375 (4)
C2—C1—C6 119.6 (4) C15—C16—H16C 109.5
C2—C1—N1 123.1 (4) H16A—C16—H16C 109.5
C6—C1—N1 117.3 (4) H16B—C16—H16C 109.5
C3—C2—C1 120.0 (4) C15—C17—H17A 109.5
C3—C2—H2 120.0 C15—C17—H17B 109.5
C1—C2—H2 120.0 H17A—C17—H17B 109.5
C4—C3—C2 119.6 (4) C15—C17—H17C 109.5
C4—C3—H3 120.2 H17A—C17—H17C 109.5
C2—C3—H3 120.2 H17B—C17—H17C 109.5
C3—C4—C5 120.7 (4) C15—C18—H18A 109.5
C3—C4—H4 119.7 C15—C18—H18B 109.5
C5—C4—H4 119.7 H18A—C18—H18B 109.5
C4—C5—C6 120.9 (4) C15—C18—H18C 109.5
C4—C5—H5 119.5 H18A—C18—H18C 109.5
C6—C5—H5 119.5 H18B—C18—H18C 109.5
C5—C6—C1 119.2 (4) C14—N1—C1 119.5 (4)
C5—C6—N2 121.6 (4) C14—N1—Zn1 112.1 (3)
C1—C6—N2 119.1 (4) C1—N1—Zn1 110.9 (3)
N2i—C7—C8 113.3 (3) C14—N1—H1N 94 (3)
N2i—C7—H7A 108.9 C1—N1—H1N 108 (3)
C8—C7—H7A 108.9 Zn1—N1—H1N 111 (3)
N2i—C7—H7B 108.9 C6—N2—C7i 110.9 (3)
C8—C7—H7B 108.9 C6—N2—Zn1 108.8 (2)
H7A—C7—H7B 107.7 C7i—N2—Zn1 109.3 (2)
C9—C8—C13 119.6 (4) C6—N2—H2N 108 (3)
C9—C8—C7 121.6 (4) C7i—N2—H2N 103 (3)
C13—C8—C7 118.7 (4) Zn1—N2—H2N 116 (3)
C8—C9—C10 123.2 (4) O3—N3—O1 122.8 (5)
C8—C9—H9 118.4 O3—N3—O2 120.7 (5)
C10—C9—H9 118.4 O1—N3—O2 116.4 (5)
C11—C10—C9 116.3 (4) N3—O1—Zn1 93.6 (3)
C11—C10—C15 123.5 (4) N3—O2—Zn1 93.8 (3)
C9—C10—C15 120.2 (4) C13—O4—Zn1 128.2 (2)
C10—C11—C12 123.1 (4) C13—O4—Zn1i 111.8 (2)
C10—C11—H11 118.5 Zn1—O4—Zn1i 96.50 (9)
C12—C11—H11 118.5 O4—Zn1—O4i 83.50 (9)
C11—C12—C13 119.2 (4) O4—Zn1—N1 89.82 (13)
C11—C12—C14 118.9 (4) O4i—Zn1—N1 111.54 (13)
C13—C12—C14 121.9 (4) O4—Zn1—N2 169.86 (13)
O4—C13—C12 123.1 (4) O4i—Zn1—N2 92.88 (11)
O4—C13—C8 118.4 (4) N1—Zn1—N2 82.68 (14)
C12—C13—C8 118.6 (4) O4—Zn1—O2 98.08 (11)
N1—C14—C12 120.3 (4) O4i—Zn1—O2 147.90 (13)
N1—C14—H14A 107.2 N1—Zn1—O2 100.54 (14)
C12—C14—H14A 107.2 N2—Zn1—O2 90.02 (12)
N1—C14—H14B 107.2 O4—Zn1—O1 92.56 (11)
C12—C14—H14B 107.2 O4i—Zn1—O1 91.78 (11)
H14A—C14—H14B 106.9 N1—Zn1—O1 156.68 (13)
C18—C15—C16 107.6 (4) N2—Zn1—O1 97.03 (12)
C18—C15—C17 108.8 (4) O2—Zn1—O1 56.16 (11)
C16—C15—C17 107.2 (4) O4—Zn1—Zn1i 42.06 (7)
C18—C15—C10 112.8 (4) O4i—Zn1—Zn1i 41.45 (6)
C16—C15—C10 108.9 (4) N1—Zn1—Zn1i 104.20 (11)
C17—C15—C10 111.4 (4) N2—Zn1—Zn1i 133.61 (9)
C15—C16—H16A 109.5 O2—Zn1—Zn1i 131.67 (9)
C15—C16—H16B 109.5 O1—Zn1—Zn1i 92.91 (9)
H16A—C16—H16B 109.5
C6—C1—C2—C3 0.1 (6) C12—C13—O4—Zn1 4.7 (5)
N1—C1—C2—C3 −179.9 (4) C8—C13—O4—Zn1 −174.7 (2)
C1—C2—C3—C4 −0.6 (6) C12—C13—O4—Zn1i 122.7 (4)
C2—C3—C4—C5 0.2 (7) C8—C13—O4—Zn1i −56.6 (4)
C3—C4—C5—C6 0.8 (7) C13—O4—Zn1—O4i 124.4 (3)
C4—C5—C6—C1 −1.2 (6) Zn1i—O4—Zn1—O4i 0.0
C4—C5—C6—N2 −179.0 (4) C13—O4—Zn1—N1 12.7 (3)
C2—C1—C6—C5 0.8 (6) Zn1i—O4—Zn1—N1 −111.71 (13)
N1—C1—C6—C5 −179.2 (4) C13—O4—Zn1—N2 54.8 (8)
C2—C1—C6—N2 178.7 (4) Zn1i—O4—Zn1—N2 −69.6 (7)
N1—C1—C6—N2 −1.4 (6) C13—O4—Zn1—O2 −87.9 (3)
N2i—C7—C8—C9 −114.2 (4) Zn1i—O4—Zn1—O2 147.67 (13)
N2i—C7—C8—C13 68.2 (5) C13—O4—Zn1—O1 −144.1 (3)
C13—C8—C9—C10 0.9 (6) Zn1i—O4—Zn1—O1 91.50 (12)
C7—C8—C9—C10 −176.7 (4) C13—O4—Zn1—Zn1i 124.4 (3)
C8—C9—C10—C11 0.4 (6) C14—N1—Zn1—O4 −41.6 (3)
C8—C9—C10—C15 −178.8 (4) C1—N1—Zn1—O4 −177.9 (3)
C9—C10—C11—C12 −1.3 (6) C14—N1—Zn1—O4i −124.5 (3)
C15—C10—C11—C12 177.8 (4) C1—N1—Zn1—O4i 99.2 (3)
C10—C11—C12—C13 0.9 (6) C14—N1—Zn1—N2 145.2 (3)
C10—C11—C12—C14 179.8 (4) C1—N1—Zn1—N2 8.9 (3)
C11—C12—C13—O4 −178.9 (3) C14—N1—Zn1—O2 56.6 (3)
C14—C12—C13—O4 2.2 (6) C1—N1—Zn1—O2 −79.7 (3)
C11—C12—C13—C8 0.5 (6) C14—N1—Zn1—O1 54.5 (5)
C14—C12—C13—C8 −178.4 (4) C1—N1—Zn1—O1 −81.8 (4)
C9—C8—C13—O4 178.1 (3) C14—N1—Zn1—Zn1i −81.5 (3)
C7—C8—C13—O4 −4.3 (5) C1—N1—Zn1—Zn1i 142.2 (2)
C9—C8—C13—C12 −1.3 (6) C6—N2—Zn1—O4 −51.9 (8)
C7—C8—C13—C12 176.3 (3) C7i—N2—Zn1—O4 69.3 (8)
C11—C12—C14—N1 140.1 (4) C6—N2—Zn1—O4i −120.7 (2)
C13—C12—C14—N1 −40.9 (7) C7i—N2—Zn1—O4i 0.5 (2)
C11—C10—C15—C18 −2.3 (6) C6—N2—Zn1—N1 −9.4 (2)
C9—C10—C15—C18 176.8 (4) C7i—N2—Zn1—N1 111.8 (3)
C11—C10—C15—C16 −121.6 (5) C6—N2—Zn1—O2 91.3 (3)
C9—C10—C15—C16 57.5 (5) C7i—N2—Zn1—O2 −147.6 (2)
C11—C10—C15—C17 120.4 (4) C6—N2—Zn1—O1 147.1 (2)
C9—C10—C15—C17 −60.5 (6) C7i—N2—Zn1—O1 −91.7 (2)
C12—C14—N1—C1 −166.4 (4) C6—N2—Zn1—Zn1i −112.0 (2)
C12—C14—N1—Zn1 61.4 (5) C7i—N2—Zn1—Zn1i 9.2 (3)
C2—C1—N1—C14 40.4 (6) N3—O2—Zn1—O4 −88.6 (2)
C6—C1—N1—C14 −139.5 (4) N3—O2—Zn1—O4i 2.0 (3)
C2—C1—N1—Zn1 173.0 (3) N3—O2—Zn1—N1 −180.0 (2)
C6—C1—N1—Zn1 −6.9 (5) N3—O2—Zn1—N2 97.5 (2)
C5—C6—N2—C7i 66.3 (5) N3—O2—Zn1—O1 −1.0 (2)
C1—C6—N2—C7i −111.5 (4) N3—O2—Zn1—Zn1i −60.0 (3)
C5—C6—N2—Zn1 −173.5 (3) N3—O1—Zn1—O4 99.0 (2)
C1—C6—N2—Zn1 8.7 (4) N3—O1—Zn1—O4i −177.4 (2)
O3—N3—O1—Zn1 −179.5 (4) N3—O1—Zn1—N1 3.5 (5)
O2—N3—O1—Zn1 −1.7 (4) N3—O1—Zn1—N2 −84.3 (2)
O3—N3—O2—Zn1 179.5 (3) N3—O1—Zn1—O2 1.0 (2)
O1—N3—O2—Zn1 1.7 (4) N3—O1—Zn1—Zn1i 141.1 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2213).

References

  1. Bazzicalupi, C., Bencini, A., Bianchi, A., Fusi, V., Giorgi, C., Paoletti, P., Valtancoli, B. & Zanchi, D. (1997). Inorg. Chem 36, 2784–2790. [DOI] [PubMed]
  2. Burley, S. K., David, P. R., Taylor, A. & Lipscomb, W. N. (1990). Proc. Natl. Acad. Sci. USA, 87, 6878–6882. [DOI] [PMC free article] [PubMed]
  3. Dutta, B., Bag, P., Flörke, U. & Nag, K. (2005). Inorg. Chem 44,147–157. [DOI] [PubMed]
  4. Fan, L.-J., Ma, J.-F. & Liu, J. (2009). Acta Cryst. E65, m777–m778. [DOI] [PMC free article] [PubMed]
  5. Lipscomb, W. N. & Straeter, N. (1996). Chem. Rev 96, 2375–2434. [DOI] [PubMed]
  6. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  7. Roderick, S. & Mathews, B. W. (1993). Biochemistry, 32, 3907–3912. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028530/hy2213sup1.cif

e-65-0m985-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028530/hy2213Isup2.hkl

e-65-0m985-Isup2.hkl (208.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES