Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 11;65(Pt 8):o1838. doi: 10.1107/S1600536809026129

N-{4-Bromo-2-[(S)-menth­yloxy]-5-oxo-2,5-dihydro-3-fur­yl}-l-valine

Xiu-Mei Song a, Zhao-Yang Li a, Zhao-Yang Wang a,*, Jian-Hua Fu a
PMCID: PMC2977280  PMID: 21583539

Abstract

The title compound, C19H30BrNO5, was obtained via a tandem asymmetric Michael addition–elimination reaction of 3,4-dibromo-5-[(S)-l-menth­yloxy]furan-2(5H)-one and l-valine in the presence of potassium hydroxide. The mol­ecular structure contains an approximately planar (r.m.s. deviation = 0.0204 Å) five-membered furan­one ring and a six-membered menth­yloxy ring adopting a chair conformation. The crystal packing is stabilized by inter­molecular O—H⋯O and N—H⋯O hydrogen bonding.

Related literature

For applications of chiral 5-(l-menth­yloxy)-2(5H)-furan­ones, see: Feringa & De Jong (1988); De Koning et al. (1997); Lattmann et al. (1999); He et al. (2006); Wang et al. (2006). For biologically active 4-amino-2(5H)-furan­ones, see: Kimura et al. (2000); Tanoury et al. (2008). For related compounds, see: Wang et al. (2006); Li et al. (2009). For the synthesis, see: Chen & Geng (1993).graphic file with name e-65-o1838-scheme1.jpg

Experimental

Crystal data

  • C19H30BrNO5

  • M r = 432.34

  • Tetragonal, Inline graphic

  • a = 10.5409 (9) Å

  • c = 39.388 (7) Å

  • V = 4376.4 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.91 mm−1

  • T = 293 K

  • 0.30 × 0.22 × 0.18 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.558, T max = 0.710

  • 22304 measured reflections

  • 3859 independent reflections

  • 2726 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.085

  • S = 1.03

  • 3859 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983), 1526 Friedel pairs

  • Flack parameter: −0.001 (11)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026129/xu2542sup1.cif

e-65-o1838-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026129/xu2542Isup2.hkl

e-65-o1838-Isup2.hkl (185.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.86 2.28 3.047 (4) 149
O4—H4⋯O2ii 0.82 1.83 2.615 (3) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

supplementary crystallographic information

Comment

Chiral 5-(l-menthyloxy)-2(5H)-furanones have been utilized as key building blocks in the synthesis of supramolecules and important natural products since 1980's (Feringa & De Jong, 1988; De Koning et al., 1997; Lattmann et al., 1999), especially in asymmetric synthesis (He et al., 2006; Wang et al., 2006). At the same time, 4-amino-2(5H)-furanone is an attractive moiety in chemical, pharmaceutical and agrochemical research. Many 4-amino-2(5H)-furanones have been patented as prodrugs or insecticides and herbicides (Kimura et al., 2000; Tanoury et al., 2008). Attracted by versatile 4-amino-2(5H)-furanones, we synthesized the title compound with chiral synthon 3,4-dibromo-5-(S)-(l-menthyloxy)-2(5H)-furanone and L-valine in the present of potassium hydroxide via the tandem asymmetric Michael addition-elimination reaction. With 2(5H)-furanone moiety and polyfunctional groups (carboxyl, amino, halo), the title compound is expected to be a biologically active product and excellent ligand.

The structure of the title compound is illustrated in Fig. 1. The title compound which has five chiral centers (C2(S), C8(S), C9(R), C10(S), C14(R)) contains a five-membered furanone ring and a six-membered menthyloxy ring connected each other via C8—O3—C9 ether bond. The furanone ring is approximately planar, whereas the cyclohexane ring displays a chair conformation with three substituents occupying equatorial positions. The bond lengths and angles in the title compound are good agreement with the expected values (Wang et al., 2006; Li et al., 2009). In the crystal structure the molecules are linked by intermolecular hydrogen bonds (Table 1).

Experimental

The precursor 3,4-dibromo-5-(S)-(l-menthyloxy)-2(5H)-furanone was prepared according to the literature procedure (Chen et al., 1993). An absolute ethanol solution (5 ml) of L-valine (4.5 mmol) and potassium hydroxide (5.8 mmol) was mixed with the dichloromethane solution (6 ml) of 3,4-dibromo-5-(S)-(l-menthyloxy)-2(5H)-furanone (3.0 mmol) under nitrogen atmosphere. The solution was stirred for 24 h at room temperature, and then the solvents were removed under reduced pressure. The solid residual was dissolved in dichloromethane, and pH of the solution was adjusted to 3 with 15% of aqueous HCl solution. Then the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the product yielding (I) 0.9186 g (71.1%). Colorless crystals were obtained in acetone solution by slow evaporation.

Refinement

The carboxyl H and imino H atoms were placed in calculated positions with O—H = 0.82 and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were positioned in calculated positions with C—H = 0.97 (methylene) or 0.98 Å (methine), and were refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot (30% probability level) of the title compound.

Crystal data

C19H30BrNO5 Dx = 1.312 Mg m3
Mr = 432.34 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212 Cell parameters from 3973 reflections
Hall symbol: P 4nw 2abw θ = 2.2–19.3°
a = 10.5409 (9) Å µ = 1.91 mm1
c = 39.388 (7) Å T = 293 K
V = 4376.4 (9) Å3 Block, colourless
Z = 8 0.30 × 0.22 × 0.18 mm
F(000) = 1808.0

Data collection

Bruker APEXII area-detector diffractometer 3859 independent reflections
Radiation source: fine-focus sealed tube 2726 reflections with I > 2σ(I)
graphite Rint = 0.065
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −11→12
Tmin = 0.558, Tmax = 0.710 k = −12→9
22304 measured reflections l = −40→46

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0221P)2 + 1.5196P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3859 reflections Δρmax = 0.43 e Å3
241 parameters Δρmin = −0.40 e Å3
0 restraints Absolute structure: Flack (1983), 1526 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.001 (11)

Special details

Experimental. Data for (I): [α]20°D = 63.39° (c 0.437, CH3CH2OH); 1H NMR (400 MHz, CDCl3, TMS): 0.830 (3H, d, J = 6.8 Hz, CH3), 0.897–0.933 (7H, m, CH, 2CH3), 0.955–1.047 (8H, m, 2CH3, CH2), 1.316–1.451 (2H, m, 2CH), 1.610–1.708 (2H, m, CH2), 2.102–2.347 (3H, m, CH2, CH), 3.519–3.610 (1H, m, CH), 4.796 (1H, s, NH), 5.160–5.260 (1H, m, CH), 5.720 (1H, s, CH), 10.720 (1H, s, COOH); ESI-MS, m/z (%): Calcd for C19H31BrNO5+([M+H]+): 434.14, Found: 434.16 (95.0).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.60721 (4) 1.06205 (6) 0.066070 (11) 0.0784 (2)
C1 0.3102 (4) 1.0150 (4) −0.02299 (8) 0.0413 (9)
C2 0.3657 (3) 0.9857 (3) 0.01146 (8) 0.0421 (9)
H2 0.4503 1.0240 0.0126 0.051*
C3 0.3802 (4) 0.8413 (4) 0.01711 (9) 0.0599 (12)
H3 0.3900 0.8288 0.0416 0.072*
C4 0.4988 (5) 0.7874 (5) 0.00061 (13) 0.105 (2)
H4A 0.5138 0.7032 0.0090 0.157*
H4B 0.5702 0.8404 0.0060 0.157*
H4C 0.4875 0.7845 −0.0236 0.157*
C5 0.3284 (3) 1.0733 (3) 0.06891 (8) 0.0367 (8)
C6 0.4445 (3) 1.0829 (3) 0.08348 (8) 0.0447 (9)
C7 0.4303 (4) 1.1255 (3) 0.11806 (8) 0.0457 (9)
C8 0.2303 (3) 1.1000 (4) 0.09637 (7) 0.0398 (8)
H8 0.1722 1.1677 0.0894 0.048*
C9 0.0390 (3) 1.0016 (3) 0.11682 (8) 0.0410 (9)
H9 −0.0103 1.0597 0.1026 0.049*
C10 −0.0201 (4) 0.8704 (3) 0.11490 (10) 0.0522 (11)
H10 0.0288 0.8163 0.1303 0.063*
C11 −0.0114 (5) 0.8091 (4) 0.07965 (11) 0.0685 (13)
H11 0.0778 0.8134 0.0728 0.082*
C12 −0.1550 (4) 0.8779 (5) 0.12957 (12) 0.0746 (14)
H12A −0.2064 0.9322 0.1152 0.090*
H12B −0.1925 0.7939 0.1294 0.090*
C13 −0.1566 (4) 0.9290 (5) 0.16525 (11) 0.0748 (14)
H13A −0.1137 0.8694 0.1801 0.090*
H13B −0.2438 0.9361 0.1728 0.090*
C14 −0.0928 (4) 1.0580 (4) 0.16822 (9) 0.0602 (11)
H14 −0.1425 1.1186 0.1548 0.072*
C15 0.0400 (3) 1.0516 (4) 0.15277 (9) 0.0504 (10)
H15A 0.0772 1.1358 0.1529 0.061*
H15B 0.0929 0.9972 0.1667 0.061*
C16 −0.0907 (5) 1.1053 (5) 0.20473 (10) 0.0854 (15)
H16A −0.1760 1.1192 0.2124 0.128*
H16B −0.0441 1.1835 0.2059 0.128*
H16C −0.0506 1.0431 0.2189 0.128*
C17 0.2621 (5) 0.7689 (5) 0.00673 (12) 0.0897 (16)
H17A 0.2539 0.7706 −0.0175 0.134*
H17B 0.1889 0.8078 0.0169 0.134*
H17C 0.2687 0.6826 0.0143 0.134*
C18 −0.0868 (5) 0.8769 (5) 0.05239 (12) 0.0987 (18)
H18A −0.0734 0.8358 0.0309 0.148*
H18B −0.0595 0.9636 0.0510 0.148*
H18C −0.1754 0.8743 0.0580 0.148*
C19 −0.0465 (6) 0.6681 (5) 0.08090 (16) 0.123 (2)
H19A −0.1369 0.6595 0.0827 0.185*
H19B −0.0070 0.6294 0.1003 0.185*
H19C −0.0175 0.6271 0.0606 0.185*
N1 0.2878 (3) 1.0434 (3) 0.03785 (6) 0.0450 (7)
H1 0.2098 1.0594 0.0330 0.054*
O1 0.3055 (3) 1.1382 (2) 0.12568 (5) 0.0479 (7)
O2 0.5122 (3) 1.1529 (3) 0.13854 (6) 0.0604 (8)
O3 0.1660 (2) 0.9901 (2) 0.10285 (6) 0.0429 (6)
O4 0.3943 (3) 0.9922 (4) −0.04650 (6) 0.0843 (11)
H4 0.3630 1.0057 −0.0652 0.127*
O5 0.2048 (3) 1.0509 (3) −0.02793 (6) 0.0596 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0465 (2) 0.1398 (5) 0.0488 (2) 0.0113 (3) −0.0033 (2) −0.0117 (3)
C1 0.047 (2) 0.051 (2) 0.0254 (19) 0.0110 (19) −0.0007 (17) −0.0051 (16)
C2 0.046 (2) 0.054 (3) 0.0255 (18) 0.0083 (18) −0.0002 (15) −0.0037 (16)
C3 0.093 (3) 0.058 (3) 0.029 (2) 0.023 (2) −0.006 (2) 0.0020 (18)
C4 0.136 (5) 0.091 (4) 0.087 (4) 0.056 (4) 0.017 (4) −0.007 (3)
C5 0.050 (2) 0.038 (2) 0.0221 (18) 0.0055 (18) 0.0006 (16) 0.0007 (15)
C6 0.052 (2) 0.057 (3) 0.0252 (17) −0.002 (2) −0.0005 (17) 0.0033 (16)
C7 0.061 (3) 0.050 (2) 0.0257 (18) −0.010 (2) −0.0028 (19) 0.0072 (17)
C8 0.051 (2) 0.044 (2) 0.0246 (18) −0.001 (2) 0.0024 (16) −0.0045 (18)
C9 0.042 (2) 0.047 (2) 0.034 (2) 0.004 (2) 0.0062 (17) 0.0082 (16)
C10 0.051 (3) 0.051 (3) 0.054 (2) −0.004 (2) −0.003 (2) 0.0120 (19)
C11 0.068 (3) 0.052 (3) 0.086 (4) −0.004 (2) −0.003 (3) −0.018 (2)
C12 0.060 (3) 0.081 (3) 0.083 (4) −0.016 (3) 0.007 (2) 0.014 (3)
C13 0.064 (3) 0.098 (4) 0.062 (3) −0.004 (3) 0.018 (2) 0.019 (3)
C14 0.066 (3) 0.072 (3) 0.043 (2) 0.013 (3) 0.014 (2) 0.014 (2)
C15 0.058 (2) 0.058 (2) 0.035 (2) 0.000 (2) 0.0067 (18) 0.0044 (18)
C16 0.108 (4) 0.099 (4) 0.049 (3) 0.016 (4) 0.030 (3) 0.006 (3)
C17 0.132 (5) 0.068 (3) 0.070 (4) −0.016 (3) −0.010 (3) −0.004 (3)
C18 0.121 (5) 0.114 (4) 0.061 (3) 0.016 (4) −0.021 (3) −0.026 (3)
C19 0.129 (5) 0.064 (3) 0.177 (6) −0.020 (4) −0.007 (4) −0.038 (4)
N1 0.0439 (17) 0.066 (2) 0.0249 (15) 0.0106 (16) −0.0028 (13) −0.0058 (15)
O1 0.0584 (18) 0.0629 (19) 0.0225 (12) −0.0081 (13) 0.0048 (12) −0.0114 (12)
O2 0.070 (2) 0.082 (2) 0.0288 (14) −0.0203 (15) −0.0116 (14) −0.0017 (13)
O3 0.0499 (15) 0.0424 (16) 0.0364 (14) −0.0019 (13) 0.0063 (12) −0.0002 (11)
O4 0.0685 (19) 0.158 (3) 0.0264 (14) 0.041 (2) 0.0074 (14) 0.0028 (16)
O5 0.0627 (19) 0.083 (2) 0.0334 (15) 0.0299 (17) −0.0063 (12) −0.0061 (14)

Geometric parameters (Å, °)

Br1—C6 1.861 (4) C11—C18 1.515 (6)
C1—O5 1.190 (4) C11—C19 1.532 (6)
C1—O4 1.304 (4) C11—H11 0.9800
C1—C2 1.509 (4) C12—C13 1.505 (6)
C2—N1 1.458 (4) C12—H12A 0.9700
C2—C3 1.546 (5) C12—H12B 0.9700
C2—H2 0.9800 C13—C14 1.522 (6)
C3—C17 1.516 (6) C13—H13A 0.9700
C3—C4 1.519 (6) C13—H13B 0.9700
C3—H3 0.9800 C14—C16 1.522 (5)
C4—H4A 0.9600 C14—C15 1.528 (5)
C4—H4B 0.9600 C14—H14 0.9800
C4—H4C 0.9600 C15—H15A 0.9700
C5—N1 1.334 (4) C15—H15B 0.9700
C5—C6 1.355 (5) C16—H16A 0.9600
C5—C8 1.523 (4) C16—H16B 0.9600
C6—C7 1.442 (4) C16—H16C 0.9600
C7—O2 1.217 (4) C17—H17A 0.9600
C7—O1 1.356 (4) C17—H17B 0.9600
C8—O3 1.366 (4) C17—H17C 0.9600
C8—O1 1.457 (4) C18—H18A 0.9600
C8—H8 0.9800 C18—H18B 0.9600
C9—O3 1.452 (4) C18—H18C 0.9600
C9—C15 1.511 (5) C19—H19A 0.9600
C9—C10 1.518 (5) C19—H19B 0.9600
C9—H9 0.9800 C19—H19C 0.9600
C10—C11 1.535 (5) N1—H1 0.8600
C10—C12 1.537 (6) O4—H4 0.8200
C10—H10 0.9800
O5—C1—O4 125.2 (3) C13—C12—C10 112.3 (4)
O5—C1—C2 125.0 (3) C13—C12—H12A 109.1
O4—C1—C2 109.7 (3) C10—C12—H12A 109.1
N1—C2—C1 109.7 (3) C13—C12—H12B 109.1
N1—C2—C3 111.4 (3) C10—C12—H12B 109.1
C1—C2—C3 111.7 (3) H12A—C12—H12B 107.9
N1—C2—H2 108.0 C12—C13—C14 112.7 (3)
C1—C2—H2 108.0 C12—C13—H13A 109.0
C3—C2—H2 108.0 C14—C13—H13A 109.0
C17—C3—C4 111.9 (4) C12—C13—H13B 109.0
C17—C3—C2 112.0 (4) C14—C13—H13B 109.0
C4—C3—C2 112.8 (4) H13A—C13—H13B 107.8
C17—C3—H3 106.5 C13—C14—C16 111.8 (3)
C4—C3—H3 106.5 C13—C14—C15 109.5 (3)
C2—C3—H3 106.5 C16—C14—C15 112.2 (4)
C3—C4—H4A 109.5 C13—C14—H14 107.7
C3—C4—H4B 109.5 C16—C14—H14 107.7
H4A—C4—H4B 109.5 C15—C14—H14 107.7
C3—C4—H4C 109.5 C9—C15—C14 112.5 (3)
H4A—C4—H4C 109.5 C9—C15—H15A 109.1
H4B—C4—H4C 109.5 C14—C15—H15A 109.1
N1—C5—C6 134.1 (3) C9—C15—H15B 109.1
N1—C5—C8 118.5 (3) C14—C15—H15B 109.1
C6—C5—C8 107.4 (3) H15A—C15—H15B 107.8
C5—C6—C7 109.3 (3) C14—C16—H16A 109.5
C5—C6—Br1 131.9 (2) C14—C16—H16B 109.5
C7—C6—Br1 118.7 (3) H16A—C16—H16B 109.5
O2—C7—O1 121.2 (3) C14—C16—H16C 109.5
O2—C7—C6 128.8 (4) H16A—C16—H16C 109.5
O1—C7—C6 109.9 (3) H16B—C16—H16C 109.5
O3—C8—O1 110.9 (3) C3—C17—H17A 109.5
O3—C8—C5 108.3 (3) C3—C17—H17B 109.5
O1—C8—C5 104.1 (3) H17A—C17—H17B 109.5
O3—C8—H8 111.1 C3—C17—H17C 109.5
O1—C8—H8 111.1 H17A—C17—H17C 109.5
C5—C8—H8 111.1 H17B—C17—H17C 109.5
O3—C9—C15 112.2 (3) C11—C18—H18A 109.5
O3—C9—C10 106.5 (3) C11—C18—H18B 109.5
C15—C9—C10 111.6 (3) H18A—C18—H18B 109.5
O3—C9—H9 108.9 C11—C18—H18C 109.5
C15—C9—H9 108.9 H18A—C18—H18C 109.5
C10—C9—H9 108.9 H18B—C18—H18C 109.5
C9—C10—C11 113.9 (3) C11—C19—H19A 109.5
C9—C10—C12 108.3 (3) C11—C19—H19B 109.5
C11—C10—C12 114.6 (4) H19A—C19—H19B 109.5
C9—C10—H10 106.5 C11—C19—H19C 109.5
C11—C10—H10 106.5 H19A—C19—H19C 109.5
C12—C10—H10 106.5 H19B—C19—H19C 109.5
C18—C11—C19 110.7 (4) C5—N1—C2 124.9 (3)
C18—C11—C10 114.3 (4) C5—N1—H1 117.6
C19—C11—C10 111.4 (4) C2—N1—H1 117.6
C18—C11—H11 106.6 C7—O1—C8 108.9 (2)
C19—C11—H11 106.6 C8—O3—C9 117.2 (2)
C10—C11—H11 106.6 C1—O4—H4 109.5
O5—C1—C2—N1 −17.4 (5) C12—C10—C11—C18 60.0 (5)
O4—C1—C2—N1 164.1 (3) C9—C10—C11—C19 168.0 (4)
O5—C1—C2—C3 106.6 (4) C12—C10—C11—C19 −66.5 (5)
O4—C1—C2—C3 −71.9 (4) C9—C10—C12—C13 −56.3 (5)
N1—C2—C3—C17 76.8 (4) C11—C10—C12—C13 175.3 (4)
C1—C2—C3—C17 −46.2 (4) C10—C12—C13—C14 55.7 (5)
N1—C2—C3—C4 −155.9 (3) C12—C13—C14—C16 −177.6 (4)
C1—C2—C3—C4 81.1 (4) C12—C13—C14—C15 −52.6 (5)
N1—C5—C6—C7 177.2 (4) O3—C9—C15—C14 −177.3 (3)
C8—C5—C6—C7 −5.1 (4) C10—C9—C15—C14 −57.9 (4)
N1—C5—C6—Br1 1.8 (6) C13—C14—C15—C9 53.7 (4)
C8—C5—C6—Br1 179.5 (3) C16—C14—C15—C9 178.5 (3)
C5—C6—C7—O2 −174.9 (4) C6—C5—N1—C2 13.4 (6)
Br1—C6—C7—O2 1.2 (5) C8—C5—N1—C2 −164.1 (3)
C5—C6—C7—O1 2.2 (4) C1—C2—N1—C5 −156.4 (3)
Br1—C6—C7—O1 178.3 (2) C3—C2—N1—C5 79.5 (4)
N1—C5—C8—O3 66.1 (4) O2—C7—O1—C8 179.3 (3)
C6—C5—C8—O3 −112.0 (3) C6—C7—O1—C8 1.9 (4)
N1—C5—C8—O1 −175.8 (3) O3—C8—O1—C7 111.4 (3)
C6—C5—C8—O1 6.1 (4) C5—C8—O1—C7 −4.8 (4)
O3—C9—C10—C11 −51.4 (4) O1—C8—O3—C9 91.0 (3)
C15—C9—C10—C11 −174.1 (3) C5—C8—O3—C9 −155.3 (3)
O3—C9—C10—C12 179.8 (3) C15—C9—O3—C8 −68.8 (3)
C15—C9—C10—C12 57.1 (4) C10—C9—O3—C8 168.9 (3)
C9—C10—C11—C18 −65.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O5i 0.86 2.28 3.047 (4) 149
O4—H4···O2ii 0.82 1.83 2.615 (3) 160

Symmetry codes: (i) y−1, x+1, −z; (ii) −y+3/2, x+1/2, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2542).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, Q.-H. & Geng, Z. (1993). Acta Chim. Sin.51, 622–624.
  3. De Koning, C. B., Hancock, R. D. & Van Otterlo, W. A. L. (1997). Tetrahedron Lett.8, 1261–1264.
  4. Feringa, B. L. & De Jong, J. C. (1988). J. Org. Chem.53, 125–127.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. He, L., Liu, Y.-M., Li, M. & Chen, Q.-H. (2006). Chem. J. Chin. Univ.27, 464–467.
  7. Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829–831. [DOI] [PubMed]
  8. Lattmann, E., Billington, D. C. & Langley, C. A. (1999). Drug Des. Discov.16, 243–250. [PubMed]
  9. Li, Z., Song, X., Wang, Z. & Yang, K. (2009). Acta Cryst. E65, o1030. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  12. Tanoury, G. J., Chen, M.-Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett.10, 185–188. [DOI] [PubMed]
  13. Wang, J.-P., Chen, X.-X. & Chen, Q.-H. (2006). Acta Chim. Sin.64, 686–690.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026129/xu2542sup1.cif

e-65-o1838-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026129/xu2542Isup2.hkl

e-65-o1838-Isup2.hkl (185.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES