Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 31;65(Pt 8):o2059. doi: 10.1107/S1600536809029948

Methyl 4-methyl-2-oxo-1,2,5,6-tetra­hydro-4H-pyrrolo[3,2,1-ij]quinoline-6-carboxyl­ate

Yulia A Zhuravleva a, Anatolij V Zimichev a, Margarita N Zemtsova a, Victor B Rybakov b,*, Yurij N Klimochkin a
PMCID: PMC2977288  PMID: 21583721

Abstract

In the title mol­ecule, C14H15NO3, the six-membered heterocyclic ring exhibits an envelope conformation. In the crystal, C—H⋯π inter­actions link the mol­ecules into centrosymmetric dimers, and weak inter­molecular C—H⋯O hydrogen bonds link these dimers into columns propagated along [100].

Related literature

For details of the synthesis, see: Zhuravleva et al. (2009). For a related structure, see: Bond et al. (1979). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-65-o2059-scheme1.jpg

Experimental

Crystal data

  • C14H15NO3

  • M r = 245.27

  • Monoclinic, Inline graphic

  • a = 8.309 (3) Å

  • b = 18.524 (5) Å

  • c = 8.730 (3) Å

  • β = 112.30 (3)°

  • V = 1243.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2699 measured reflections

  • 2445 independent reflections

  • 1974 reflections with I > 2σ(I)

  • R int = 0.030

  • 1 standard reflections frequency: 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.174

  • S = 1.09

  • 2445 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029948/cv2589sup1.cif

e-65-o2059-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029948/cv2589Isup2.hkl

e-65-o2059-Isup2.hkl (120.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACgi 0.97 2.55 3.514 (3) 174
C4—H4⋯O12ii 0.98 2.40 3.274 (3) 149
C11—H11A⋯O12iii 0.97 2.56 3.394 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg is the centroid of the C5–C10 ring.

Acknowledgments

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database.

supplementary crystallographic information

Comment

Alkaloids have diverse and impotant physiological activity but it is impossible to fill alkaloids demand from natural source. This causes an attention to new synthetic methods and investigation of similar compounds. Methyl 2-oxo-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinoline-6-carboxylate (II) was prepared from the previously synthesized substituted 1,2,3,4-tetrahydroquinoline-4-carboxylic acid (I) - Fig. 1. The configuration of substituents cannot be resolved unambiguously by NMR. In accordance with the 1H NMR and GC-MS data starting I was pure cis-isomer (Zhuravleva et al., 2009). Only one entry (Bond et al., 1979) with the same heterothricycllic moiety was found in CSDB (ver. 5.30; Allen, 2002). All geometric parameters - the same bonds and angles are identical in s.u. intervals.

In the crystal, the C–H···π (centroid of C5-10) interactions (Table 1) link the molecules into centrosymmetric dimers. Weak intermolecular C–H···O hydrogen bonds (Table 1) link further these dimers into columns propagated in direction [100] .

Experimental

To a stirred solution of cis-methyl 1-(chloroacetyl)-2-methyl-1,2,3,4-tetrahydroquinoline-4-carboxylate (3.6 mmol) in 1,2-dichlorobenzene (20 ml) aluminium chloride (36 mmol) was added dropwise at 378 K. The resulting mixture was stirred for 5 h at 378 K. To the cooled reaction mixture was added ice-water and adjusted to pH 10 with solution of sodium hydrocarbonate. The mixture was extracted with ethyl acetate, dried over anhydrous sodium sulfate and concentrated under reduced pressure. Recrystallization of the crude product from ethanol gave 0.73 g of colourless crystals. Yield 73%, mp 398-341 K.

IR, ν, cm-1: 1731 (CO), 1701 (NCO). MS, m/z: 245 (100) [M]+, 230 (40), 187 (7), 186 (84), 170 (66), 158 (91), 142 (46). 1H NMR, δ: 1.15 d (3H, CH3), 2.09-2.20 m (1H, 3-CH2), 2.30-2.40 m (1H, 3-CH), 3.50 s (1H, CH2), 3.55 s (1H, CH2), 3.65 s (3H, OCH3), 3.96-4.01 m (1H, 2-CH), 4.17-4.27 m (1H, 4-CH), 6.95 t (1H, 6-H), 7.13 pt (2H, 7-H, 5-H). Anal. calc. for C14H15NO3, %: C 69.21; H 6.37; N 5.53. Found, %: C 68.57; H 6.12; N 5.71.

Single crystals for X-ray analysis were obtained by slow evaporation of an methylene chloride - hexane (2: 3) solution. IR spectrum was recorded (in KBr) on Shimadzu FTIR-8400S. Mass spectrum was measured on Finnigan Trance DSQ spectrometer. 1H NMR spectrum was obtained in DMSO-d6 on Bruker AM 300 (300 MHz), using TMS as internal standard. Elemental composition was determined on Euro Vector EA-3000 elemental analyzer.

Refinement

All H-atoms were geometrically positioned and refined using a riding model with d(C–H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic, d(C–H) = 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2, d(C–H) = 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3 atoms.

Figures

Fig. 1.

Fig. 1.

Synthesis of II.

Fig. 2.

Fig. 2.

Molecular structure of the title compound II, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The H atoms are presented as a small spheres of arbitrary radius.

Crystal data

C14H15NO3 F(000) = 520
Mr = 245.27 Dx = 1.310 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 8.309 (3) Å θ = 19.8–20.5°
b = 18.524 (5) Å µ = 0.09 mm1
c = 8.730 (3) Å T = 295 K
β = 112.30 (3)° Prism, yellow
V = 1243.2 (8) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.030
Radiation source: Fine-focus sealed tube θmax = 26.0°, θmin = 2.2°
Graphite h = −10→9
Nonprofiled ω scans k = 0→22
2699 measured reflections l = 0→10
2445 independent reflections 1 standard reflections every 60 min
1974 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2 Primary atom site location: Direct
Least-squares matrix: Full Secondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: Geom
wR(F2) = 0.174 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1046P)2 + 0.277P] where P = (Fo2 + 2Fc2)/3
2445 reflections (Δ/σ)max = 0.003
165 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1569 (2) 0.42646 (8) 0.3299 (2) 0.0427 (4)
C2 0.1249 (3) 0.35798 (10) 0.3939 (2) 0.0465 (5)
H2 0.2271 0.3470 0.4937 0.056*
C21 0.1052 (3) 0.29783 (11) 0.2711 (3) 0.0580 (6)
H21A −0.0013 0.3043 0.1768 0.087*
H21B 0.1027 0.2522 0.3223 0.087*
H21C 0.2016 0.2988 0.2360 0.087*
C3 −0.0291 (3) 0.36744 (11) 0.4463 (2) 0.0475 (5)
H3A 0.0069 0.3977 0.5443 0.057*
H3B −0.0600 0.3206 0.4765 0.057*
C4 −0.1924 (3) 0.40114 (11) 0.3133 (2) 0.0453 (5)
H4 −0.2691 0.4158 0.3697 0.054*
C41 −0.2951 (3) 0.34861 (11) 0.1782 (3) 0.0505 (5)
O41 −0.3534 (3) 0.36109 (10) 0.0332 (2) 0.0836 (6)
O42 −0.3192 (2) 0.28667 (8) 0.2428 (2) 0.0678 (5)
C43 −0.4180 (4) 0.23173 (15) 0.1274 (4) 0.0925 (10)
H43A −0.5231 0.2525 0.0496 0.139*
H43B −0.4466 0.1935 0.1869 0.139*
H43C −0.3499 0.2128 0.0691 0.139*
C5 −0.1448 (2) 0.46862 (10) 0.2453 (2) 0.0407 (4)
C6 −0.2560 (3) 0.52609 (12) 0.1702 (3) 0.0554 (6)
H6 −0.3722 0.5238 0.1578 0.067*
C7 −0.1959 (3) 0.58653 (12) 0.1140 (3) 0.0630 (7)
H7 −0.2727 0.6239 0.0642 0.076*
C8 −0.0246 (3) 0.59218 (11) 0.1306 (2) 0.0557 (6)
H8 0.0139 0.6327 0.0917 0.067*
C9 0.0883 (3) 0.53697 (10) 0.2055 (2) 0.0443 (5)
C10 0.0247 (2) 0.47699 (9) 0.2586 (2) 0.0362 (4)
C11 0.2786 (3) 0.52466 (12) 0.2464 (3) 0.0558 (6)
H11A 0.3485 0.5608 0.3233 0.067*
H11B 0.3050 0.5256 0.1473 0.067*
C12 0.3104 (3) 0.45028 (12) 0.3248 (3) 0.0521 (5)
O12 0.4456 (2) 0.41618 (10) 0.3776 (3) 0.0769 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0376 (8) 0.0402 (9) 0.0496 (9) 0.0039 (6) 0.0159 (7) 0.0012 (7)
C2 0.0446 (10) 0.0439 (11) 0.0427 (10) 0.0043 (8) 0.0071 (8) 0.0094 (8)
C21 0.0725 (15) 0.0358 (10) 0.0690 (14) 0.0055 (10) 0.0308 (12) −0.0003 (9)
C3 0.0561 (12) 0.0499 (11) 0.0356 (9) −0.0064 (9) 0.0164 (8) 0.0018 (8)
C4 0.0408 (10) 0.0489 (11) 0.0491 (11) −0.0034 (8) 0.0203 (8) −0.0069 (8)
C41 0.0396 (10) 0.0497 (12) 0.0563 (13) −0.0070 (8) 0.0115 (9) −0.0031 (9)
O41 0.0950 (14) 0.0728 (12) 0.0569 (11) −0.0272 (10) −0.0007 (9) −0.0017 (9)
O42 0.0704 (11) 0.0501 (9) 0.0745 (11) −0.0186 (8) 0.0183 (9) −0.0025 (8)
C43 0.0841 (19) 0.0559 (15) 0.111 (2) −0.0299 (14) 0.0071 (17) −0.0089 (15)
C5 0.0384 (9) 0.0415 (10) 0.0374 (9) 0.0009 (7) 0.0090 (7) −0.0070 (7)
C6 0.0436 (11) 0.0502 (12) 0.0577 (13) 0.0093 (9) 0.0026 (9) −0.0108 (10)
C7 0.0725 (16) 0.0412 (11) 0.0519 (13) 0.0150 (10) −0.0029 (11) −0.0007 (9)
C8 0.0873 (17) 0.0346 (10) 0.0378 (10) −0.0015 (10) 0.0154 (10) 0.0016 (8)
C9 0.0595 (12) 0.0382 (10) 0.0371 (9) −0.0051 (8) 0.0203 (9) −0.0064 (7)
C10 0.0413 (10) 0.0335 (9) 0.0320 (8) 0.0013 (7) 0.0119 (7) −0.0033 (7)
C11 0.0624 (14) 0.0507 (12) 0.0648 (13) −0.0134 (10) 0.0358 (11) −0.0086 (10)
C12 0.0427 (11) 0.0525 (12) 0.0652 (13) −0.0049 (9) 0.0251 (10) −0.0103 (10)
O12 0.0426 (9) 0.0747 (12) 0.1144 (15) 0.0075 (8) 0.0308 (9) −0.0048 (10)

Geometric parameters (Å, °)

N1—C12 1.366 (3) C43—H43A 0.9600
N1—C10 1.397 (2) C43—H43B 0.9600
N1—C2 1.451 (2) C43—H43C 0.9600
C2—C21 1.512 (3) C5—C10 1.377 (3)
C2—C3 1.523 (3) C5—C6 1.399 (3)
C2—H2 0.9800 C6—C7 1.389 (4)
C21—H21A 0.9600 C6—H6 0.9300
C21—H21B 0.9600 C7—C8 1.379 (4)
C21—H21C 0.9600 C7—H7 0.9300
C3—C4 1.544 (3) C8—C9 1.374 (3)
C3—H3A 0.9700 C8—H8 0.9300
C3—H3B 0.9700 C9—C10 1.383 (3)
C4—C5 1.500 (3) C9—C11 1.501 (3)
C4—C41 1.517 (3) C11—C12 1.517 (3)
C4—H4 0.9800 C11—H11A 0.9700
C41—O41 1.193 (3) C11—H11B 0.9700
C41—O42 1.327 (3) C12—O12 1.217 (3)
O42—C43 1.449 (3)
C12—N1—C10 110.78 (17) O42—C43—H43B 109.5
C12—N1—C2 127.21 (17) H43A—C43—H43B 109.5
C10—N1—C2 121.98 (16) O42—C43—H43C 109.5
N1—C2—C21 110.93 (17) H43A—C43—H43C 109.5
N1—C2—C3 108.22 (16) H43B—C43—H43C 109.5
C21—C2—C3 114.86 (18) C10—C5—C6 115.24 (19)
N1—C2—H2 107.5 C10—C5—C4 118.39 (16)
C21—C2—H2 107.5 C6—C5—C4 126.37 (19)
C3—C2—H2 107.5 C7—C6—C5 121.1 (2)
C2—C21—H21A 109.5 C7—C6—H6 119.4
C2—C21—H21B 109.5 C5—C6—H6 119.4
H21A—C21—H21B 109.5 C8—C7—C6 121.3 (2)
C2—C21—H21C 109.5 C8—C7—H7 119.4
H21A—C21—H21C 109.5 C6—C7—H7 119.4
H21B—C21—H21C 109.5 C9—C8—C7 119.0 (2)
C2—C3—C4 114.81 (16) C9—C8—H8 120.5
C2—C3—H3A 108.6 C7—C8—H8 120.5
C4—C3—H3A 108.6 C8—C9—C10 118.6 (2)
C2—C3—H3B 108.6 C8—C9—C11 133.9 (2)
C4—C3—H3B 108.6 C10—C9—C11 107.45 (17)
H3A—C3—H3B 107.5 C5—C10—C9 124.77 (17)
C5—C4—C41 112.46 (17) C5—C10—N1 124.60 (17)
C5—C4—C3 110.24 (15) C9—C10—N1 110.62 (17)
C41—C4—C3 113.57 (17) C9—C11—C12 103.46 (16)
C5—C4—H4 106.7 C9—C11—H11A 111.1
C41—C4—H4 106.7 C12—C11—H11A 111.1
C3—C4—H4 106.7 C9—C11—H11B 111.1
O41—C41—O42 123.5 (2) C12—C11—H11B 111.1
O41—C41—C4 125.6 (2) H11A—C11—H11B 109.0
O42—C41—C4 110.80 (19) O12—C12—N1 124.0 (2)
C41—O42—C43 116.7 (2) O12—C12—C11 128.3 (2)
O42—C43—H43A 109.5 N1—C12—C11 107.66 (18)
C12—N1—C2—C21 −78.4 (3) C7—C8—C9—C10 1.3 (3)
C10—N1—C2—C21 99.7 (2) C7—C8—C9—C11 −179.1 (2)
C12—N1—C2—C3 154.76 (19) C6—C5—C10—C9 0.7 (3)
C10—N1—C2—C3 −27.2 (2) C4—C5—C10—C9 −178.29 (17)
N1—C2—C3—C4 51.5 (2) C6—C5—C10—N1 179.68 (17)
C21—C2—C3—C4 −73.1 (2) C4—C5—C10—N1 0.7 (3)
C2—C3—C4—C5 −50.2 (2) C8—C9—C10—C5 −1.4 (3)
C2—C3—C4—C41 77.1 (2) C11—C9—C10—C5 178.81 (17)
C5—C4—C41—O41 −9.3 (3) C8—C9—C10—N1 179.47 (16)
C3—C4—C41—O41 −135.4 (3) C11—C9—C10—N1 −0.3 (2)
C5—C4—C41—O42 173.46 (17) C12—N1—C10—C5 −179.89 (17)
C3—C4—C41—O42 47.4 (2) C2—N1—C10—C5 1.8 (3)
O41—C41—O42—C43 1.8 (4) C12—N1—C10—C9 −0.8 (2)
C4—C41—O42—C43 179.1 (2) C2—N1—C10—C9 −179.16 (16)
C41—C4—C5—C10 −105.06 (19) C8—C9—C11—C12 −178.6 (2)
C3—C4—C5—C10 22.8 (2) C10—C9—C11—C12 1.1 (2)
C41—C4—C5—C6 76.1 (2) C10—N1—C12—O12 −179.4 (2)
C3—C4—C5—C6 −156.10 (19) C2—N1—C12—O12 −1.1 (4)
C10—C5—C6—C7 0.1 (3) C10—N1—C12—C11 1.5 (2)
C4—C5—C6—C7 179.04 (19) C2—N1—C12—C11 179.75 (18)
C5—C6—C7—C8 −0.2 (3) C9—C11—C12—O12 179.4 (2)
C6—C7—C8—C9 −0.5 (3) C9—C11—C12—N1 −1.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3A···Cgi 0.97 2.55 3.514 (3) 174
C4—H4···O12ii 0.98 2.40 3.274 (3) 149
C11—H11A···O12iii 0.97 2.56 3.394 (3) 145

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2589).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bond, R. F., Boeyens, J. C. A., Holzapfel, C. W. & Steyn, P. S. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 1751–1761.
  3. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zhuravleva, Yu. A., Zimichev, A. V., Zemtsova, M. N. & Klimochkin, Yu. N. (2009). Russ. J. Org. Chem.45, 622–625.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029948/cv2589sup1.cif

e-65-o2059-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029948/cv2589Isup2.hkl

e-65-o2059-Isup2.hkl (120.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES