Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 31;65(Pt 8):m1012. doi: 10.1107/S1600536809029249

Poly[[μ-1,4-bis­(imidazol-1-ylmeth­yl)benzene]bis­(μ4-cyclo­hexane-1,4-dicarboxyl­ato)dinickel(II)]

Bing-Bing Li a,b,*, Gai-Xia Fang a, Xiao-Na Ji a, Bo Xiao b, Edward R T Tiekink c
PMCID: PMC2977293  PMID: 21583309

Abstract

The structure of the polymeric title compound, [Ni2(C8H10O4)2(C14H14N4)]n, features a five-coordinate NiII centre defined by four carboxyl­ate O atoms from two different cyclo­hexane-1,4-dicarboxyl­ate (chdc) ligands and an N atom from one end of a 1,4-bis­(imidazol-1-ylmeth­yl)benzene (1,4-bix) mol­ecule. The NO4 coordination geometry is distorted square-pyramidal with the N atom in the apical position. Each end of the chdc ligand links pairs of NiII atoms into a paddle-wheel assembly, i.e. Ni2(O2CR′)4. These are connected into rows owing to the bridging nature of the chdc ligands, and the rows are connected into a two-dimensional grid via the 1,4-bix ligands. The 1,4-bix ligand, which is disposed about a centre of inversion, is disorderd. Two positions of equal occupancy were discerned for the –H2C(C6H4)CH2– residue.

Related literature

For background to coordination polymers, see: Batten & Robson (1998); Kim & Jung (2002); Yang et al. (2008). For a related Ni(II) structure, see: Lee et al. (2003).graphic file with name e-65-m1012-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C8H10O4)2(C14H14N4)]

  • M r = 696.03

  • Triclinic, Inline graphic

  • a = 8.4966 (6) Å

  • b = 8.8076 (6) Å

  • c = 10.7327 (8) Å

  • α = 93.567 (6)°

  • β = 100.608 (6)°

  • γ = 105.807 (6)°

  • V = 754.22 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 293 K

  • 0.31 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.557, T max = 0.791

  • 6115 measured reflections

  • 2640 independent reflections

  • 2287 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.139

  • S = 1.11

  • 2640 reflections

  • 224 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 1.30 e Å−3

  • Δρmin = −1.25 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029249/ng2618sup1.cif

e-65-m1012-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029249/ng2618Isup2.hkl

e-65-m1012-Isup2.hkl (127KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Henan University of Urban Construction for supporting this work.

supplementary crystallographic information

Comment

Metal–organic coordination polymers continue to attract considerable interest owing to their well documented and varied applications (Yang et al., 2008). These coordination polymers can be specially designed by the careful selection of metal cations with preferred coordination geometries, the nature of the anions, the structure of the connecting ligands, and the reaction conditions (Kim & Jung, 2002). The selection of ligand is extremely important because changing their geometries can control the topologies of the resulting coordination frameworks. While the rigid rod-like spacer, 4,4'-bipyridine, is well known in the construction of metal-organic polymers, flexible N-donor ligands such as 1,4-bis(imidazole-1-ylmethyl)benzene (1,4-bix) have not been so well explored. In this work, 1,4-bix assembles with nickel cyclohexane-1,4-dicarboxylate (chdc) to furnish [Ni(chdc)(1,4-bix)0.5], (I), which exists as a 2-D array.

The asymmetric unit of (I) comprises a Ni atom, a chdc dianion, and half a 1-4-bix molecule which is disposed about a centre of inversion (Fig. 1). Each end of the chdc ligand bridges a pair of Ni atoms to result in the formation of a paddle-wheel assembly, i.e. Ni2(O2CR')4. These are linked into rows which, in turn, are linked via the bridging 1,4-bix ligands into a 2-D array in the bc plane (Fig. 2). The layers are stacked in an ···ABC··· fashion (Fig. 3). The coordination geometry is based on a NO4 donor set that defines a square pyramid with the N donor atom in the apical position. If the second Ni atom in the paddle-wheel assembly is considered as occupying a coordination site, the Ni···Nii distance is 2.6529 (10) Å, the coordination geometry would be distorted octahedral; symmetry operation i: 2-x, 1-y, 1-z.

Experimental

Nickel chloride hexahydrate (0.118 g, 0.5 mmol), H2chdc (0.135 g, 0.5 mmol) and 1,4-bix (0.093 g, 0.5 mmol) were placed in water (12 ml), and triethylamine was added until the pH value of the solution was 5.7. The solution was heated in a 23-ml Teflon-lined stainless-steel autoclave at 440 K for 5 days. The autoclave was allowed to cool to room temperature over several hours. Green blocks were isolated in about 61% yield.

Refinement

Carbon-bound H-atoms were placed in calculated positions with C—H = 0.93 - 0.98 Å, and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Disorder was noted in bridging 1,4-bix molecule. Two positions of equal weight (from refinement) were discerned for the -H2C(C6H4)CH2- residue but not for the imidazole ring, although several of the atoms exhibited elongated displacement ellipsoids. The atoms of this ring were restrained to be approximately isotropic with application of the ISOR command in SHELXL-97 (Sheldrick, 2008).

The maximum and minimum residual electron density peaks of 1.30 and -1.25 eÅ-3, respectively, were located 0.95 Å and 1.58 Å from the C26 and H13 atoms, respectively.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit in the polymeric structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Only one component of the disordered -CH2(C6H4)CH2- residue is shown.

Fig. 2.

Fig. 2.

View of the 2-D array in (I). H atoms have been omitted for clarity.

Fig. 3.

Fig. 3.

View of the stacking of the layers in the crystal structure of (I). H atoms have been omitted for clarity.

Crystal data

[Ni2(C8H10O4)2(C14H14N4)] Z = 1
Mr = 696.03 F(000) = 362
Triclinic, P1 Dx = 1.532 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.4966 (6) Å Cell parameters from 3051 reflections
b = 8.8076 (6) Å θ = 3.0–26.4°
c = 10.7327 (8) Å µ = 1.31 mm1
α = 93.567 (6)° T = 293 K
β = 100.608 (6)° Block, green
γ = 105.807 (6)° 0.31 × 0.22 × 0.18 mm
V = 754.22 (9) Å3

Data collection

Bruker SMART APEX diffractometer 2640 independent reflections
Radiation source: fine-focus sealed tube 2287 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 25.0°, θmin = 4.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.557, Tmax = 0.791 k = −10→10
6115 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0653P)2 + 2.0659P] where P = (Fo2 + 2Fc2)/3
2640 reflections (Δ/σ)max < 0.001
224 parameters Δρmax = 1.30 e Å3
36 restraints Δρmin = −1.25 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni 1.02456 (6) 0.46763 (6) 0.61988 (5) 0.0239 (2)
O1 0.9631 (4) 0.6690 (4) 0.6585 (3) 0.0338 (7)
O2 0.9113 (4) 0.7154 (4) 0.4545 (3) 0.0335 (7)
O3 0.2691 (4) 0.5884 (4) 0.6790 (3) 0.0397 (8)
O4 0.2180 (4) 0.6331 (4) 0.4772 (3) 0.0418 (8)
N1 0.9779 (5) 0.3729 (5) 0.7773 (4) 0.0437 (8)
C1 0.9120 (5) 0.7449 (5) 0.5710 (4) 0.0264 (9)
C2 0.8505 (5) 0.8851 (5) 0.6088 (4) 0.0297 (10)
H2 0.9473 0.9801 0.6264 0.036*
C3 0.7810 (5) 0.8673 (6) 0.7302 (4) 0.0358 (11)
H3A 0.8616 0.8425 0.7962 0.043*
H3B 0.7655 0.9675 0.7597 0.043*
C4 0.6153 (5) 0.7376 (6) 0.7096 (4) 0.0323 (10)
H4A 0.5740 0.7329 0.7882 0.039*
H4B 0.6319 0.6356 0.6870 0.039*
C5 0.4869 (5) 0.7705 (5) 0.6037 (4) 0.0245 (9)
H5 0.4763 0.8750 0.6305 0.029*
C6 0.5532 (5) 0.7863 (6) 0.4803 (4) 0.0298 (10)
H6A 0.5667 0.6854 0.4501 0.036*
H6B 0.4726 0.8126 0.4152 0.036*
C7 0.7204 (5) 0.9147 (6) 0.5016 (5) 0.0340 (11)
H7A 0.7040 1.0172 0.5226 0.041*
H7B 0.7620 0.9179 0.4231 0.041*
C8 0.3134 (5) 0.6545 (5) 0.5852 (4) 0.0287 (10)
C9 1.0595 (8) 0.2825 (7) 0.8462 (5) 0.0573 (9)
H9 1.1499 0.2520 0.8274 0.069*
C10 0.9880 (8) 0.2448 (7) 0.9457 (6) 0.0573 (9)
H10 1.0191 0.1824 1.0070 0.069*
C11 0.8601 (8) 0.3888 (7) 0.8366 (5) 0.0573 (9)
H11 0.7842 0.4449 0.8098 0.069*
N2 0.8646 (6) 0.3123 (5) 0.9419 (4) 0.0437 (8) 0.50
C12 0.782 (2) 0.287 (2) 1.0446 (17) 0.047 (4) 0.50
H12A 0.7309 0.3719 1.0558 0.057* 0.50
H12B 0.8638 0.2931 1.1222 0.057* 0.50
C13 0.645 (2) 0.125 (2) 1.025 (2) 0.037 (4) 0.50
C14 0.653 (4) 0.031 (4) 1.109 (3) 0.063 (7) 0.50
H14 0.7448 0.0329 1.1717 0.075* 0.50
C15 0.520 (3) 0.084 (3) 0.916 (2) 0.050 (5) 0.50
H15 0.5460 0.1367 0.8469 0.060* 0.50
N2' 0.8646 (6) 0.3123 (5) 0.9419 (4) 0.0437 (8) 0.50
C12' 0.716 (2) 0.324 (2) 1.0150 (16) 0.059 (5) 0.50
H12C 0.7636 0.3649 1.1041 0.071* 0.50
H12D 0.6598 0.3975 0.9768 0.071* 0.50
C13' 0.594 (3) 0.164 (2) 1.005 (2) 0.045 (5) 0.50
C14' 0.606 (3) 0.063 (4) 1.104 (3) 0.057 (8) 0.50
H14' 0.6670 0.1156 1.1832 0.068* 0.50
C15' 0.464 (3) 0.114 (3) 0.898 (3) 0.055 (5) 0.50
H15' 0.4271 0.1766 0.8397 0.066* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.0223 (3) 0.0278 (3) 0.0238 (3) 0.0071 (2) 0.0085 (2) 0.0080 (2)
O1 0.0353 (17) 0.0345 (18) 0.0354 (17) 0.0157 (14) 0.0079 (14) 0.0050 (14)
O2 0.0375 (18) 0.0329 (18) 0.0368 (18) 0.0149 (14) 0.0161 (14) 0.0087 (14)
O3 0.0254 (16) 0.043 (2) 0.049 (2) 0.0002 (14) 0.0171 (15) 0.0070 (16)
O4 0.0239 (16) 0.044 (2) 0.049 (2) 0.0069 (15) −0.0055 (15) −0.0014 (16)
N1 0.0501 (18) 0.0403 (17) 0.0287 (15) −0.0138 (14) 0.0191 (13) 0.0039 (13)
C1 0.0152 (18) 0.024 (2) 0.039 (3) 0.0019 (16) 0.0096 (17) 0.0062 (19)
C2 0.0181 (19) 0.022 (2) 0.047 (3) 0.0016 (17) 0.0077 (18) 0.0006 (19)
C3 0.024 (2) 0.046 (3) 0.033 (2) 0.010 (2) −0.0002 (18) −0.010 (2)
C4 0.024 (2) 0.049 (3) 0.026 (2) 0.012 (2) 0.0081 (18) 0.010 (2)
C5 0.0177 (19) 0.026 (2) 0.031 (2) 0.0065 (17) 0.0069 (17) 0.0043 (17)
C6 0.024 (2) 0.038 (3) 0.030 (2) 0.0124 (19) 0.0068 (17) 0.0096 (19)
C7 0.028 (2) 0.034 (3) 0.050 (3) 0.014 (2) 0.021 (2) 0.017 (2)
C8 0.020 (2) 0.028 (2) 0.041 (3) 0.0090 (18) 0.0101 (19) 0.0035 (19)
C9 0.065 (2) 0.050 (2) 0.0432 (18) −0.0045 (16) 0.0031 (16) 0.0189 (15)
C10 0.065 (2) 0.050 (2) 0.0432 (18) −0.0045 (16) 0.0031 (16) 0.0189 (15)
C11 0.065 (2) 0.050 (2) 0.0432 (18) −0.0045 (16) 0.0031 (16) 0.0189 (15)
N2 0.0501 (18) 0.0403 (17) 0.0287 (15) −0.0138 (14) 0.0191 (13) 0.0039 (13)
C12 0.048 (10) 0.042 (8) 0.041 (8) −0.010 (6) 0.020 (7) 0.003 (6)
C13 0.041 (9) 0.033 (10) 0.036 (8) 0.002 (6) 0.021 (7) −0.006 (6)
C14 0.058 (15) 0.064 (14) 0.065 (11) −0.004 (10) 0.041 (10) 0.009 (10)
C15 0.057 (14) 0.056 (11) 0.039 (9) 0.008 (9) 0.022 (10) 0.013 (8)
N2' 0.0501 (18) 0.0403 (17) 0.0287 (15) −0.0138 (14) 0.0191 (13) 0.0039 (13)
C12' 0.070 (13) 0.054 (11) 0.040 (10) −0.020 (8) 0.044 (9) −0.016 (7)
C13' 0.064 (13) 0.031 (9) 0.039 (9) −0.007 (7) 0.042 (10) −0.001 (7)
C14' 0.050 (13) 0.071 (15) 0.035 (9) −0.013 (10) 0.030 (9) −0.026 (9)
C15' 0.047 (12) 0.058 (13) 0.056 (12) 0.001 (8) 0.022 (10) 0.010 (8)

Geometric parameters (Å, °)

Ni—N1 1.987 (4) C7—H7A 0.9700
Ni—O2i 2.003 (3) C7—H7B 0.9700
Ni—O3ii 2.019 (3) C9—C10 1.339 (8)
Ni—O1 2.021 (3) C9—H9 0.9300
Ni—O4iii 2.054 (3) C10—N2 1.334 (8)
Ni—Nii 2.6529 (10) C10—N2' 1.334 (8)
O1—C1 1.266 (5) C10—H10 0.9300
O2—C1 1.260 (5) C11—N2 1.352 (7)
O2—Nii 2.003 (3) C11—N2' 1.352 (7)
O3—C8 1.260 (6) C11—H11 0.9300
O3—Niiv 2.019 (3) N2—C12 1.409 (18)
O4—C8 1.256 (6) C12—C13 1.55 (3)
O4—Niiii 2.054 (3) C12—H12A 0.9700
N1—C11 1.314 (8) C12—H12B 0.9700
N1—C9 1.360 (8) C13—C14 1.27 (5)
C1—C2 1.526 (6) C13—C15 1.38 (3)
C2—C3 1.526 (6) C14—C15v 1.50 (4)
C2—C7 1.530 (6) C14—H14 0.9300
C2—H2 0.9800 C15—C14v 1.50 (4)
C3—C4 1.521 (6) C15—H15 0.9300
C3—H3A 0.9700 N2'—C12' 1.626 (16)
C3—H3B 0.9700 C12'—C13' 1.49 (3)
C4—C5 1.524 (6) C12'—H12C 0.9700
C4—H4A 0.9700 C12'—H12D 0.9700
C4—H4B 0.9700 C13'—C15' 1.39 (4)
C5—C8 1.517 (6) C13'—C14' 1.43 (5)
C5—C6 1.531 (6) C14'—C15'v 1.50 (5)
C5—H5 0.9800 C14'—H14' 0.9300
C6—C7 1.525 (6) C15'—C14'v 1.50 (5)
C6—H6A 0.9700 C15'—H15' 0.9300
C6—H6B 0.9700
N1—Ni—O2i 95.33 (16) C6—C7—H7B 109.2
N1—Ni—O3ii 100.50 (16) C2—C7—H7B 109.2
O2i—Ni—O3ii 89.68 (14) H7A—C7—H7B 107.9
N1—Ni—O1 96.72 (16) O4—C8—O3 122.9 (4)
O2i—Ni—O1 167.83 (12) O4—C8—C5 118.1 (4)
O3ii—Ni—O1 89.76 (14) O3—C8—C5 119.0 (4)
N1—Ni—O4iii 92.29 (16) C10—C9—N1 108.5 (6)
O2i—Ni—O4iii 89.74 (14) C10—C9—H9 125.7
O3ii—Ni—O4iii 167.19 (14) N1—C9—H9 125.7
O1—Ni—O4iii 88.12 (13) N2—C10—N2 0.00 (18)
N1—Ni—Nii 159.62 (13) N2—C10—C9 108.3 (5)
O2i—Ni—Nii 83.45 (9) N2'—C10—C9 108.3 (5)
O3ii—Ni—Nii 99.83 (10) N2—C10—H10 125.9
O1—Ni—Nii 84.67 (9) N2'—C10—H10 125.9
O4iii—Ni—Nii 67.40 (10) C9—C10—H10 125.9
C1—O1—Ni 122.0 (3) N1—C11—N2 110.5 (6)
C1—O2—Nii 124.7 (3) N1—C11—N2' 110.5 (6)
C8—O3—Niiv 106.2 (3) N2—C11—N2 0.0 (3)
C8—O4—Niiii 143.4 (3) N1—C11—H11 124.7
C11—N1—C9 106.2 (5) N2—C11—H11 124.7
C11—N1—Ni 125.6 (4) N2'—C11—H11 124.7
C9—N1—Ni 128.2 (4) C10—N2—C11 106.4 (5)
O2—C1—O1 124.8 (4) C10—N2—C12 114.4 (8)
O2—C1—C2 117.1 (4) C11—N2—C12 139.1 (8)
O1—C1—C2 118.1 (4) N2—C12—C13 112.9 (15)
C1—C2—C3 112.5 (4) N2—C12—H12A 109.0
C1—C2—C7 112.5 (4) C13—C12—H12A 109.0
C3—C2—C7 109.7 (3) N2'—C12—H12B 109.0
C1—C2—H2 107.3 C13—C12—H12B 109.0
C3—C2—H2 107.3 H12A—C12—H12B 107.8
C7—C2—H2 107.3 C14—C13—C15 121 (2)
C4—C3—C2 112.4 (4) C14—C13—C12 119 (2)
C4—C3—H3A 109.1 C15—C13—C12 120.2 (18)
C2—C3—H3A 109.1 C13—C14—C15v 105 (3)
C4—C3—H3B 109.1 C13—C14—H14 127.7
C2—C3—H3B 109.1 C15v—C14—H14 127.7
H3A—C3—H3B 107.9 C13—C15—C14v 131 (3)
C3—C4—C5 110.5 (4) C13—C15—H15 114.6
C3—C4—H4A 109.6 C14v—C15—H15 114.6
C5—C4—H4A 109.6 C10—N2—C11 106.4 (5)
C3—C4—H4B 109.6 C10—N2—C12' 141.6 (8)
C5—C4—H4B 109.6 C11—N2—C12' 111.8 (9)
H4A—C4—H4B 108.1 C13'—C12'—N2 109.7 (13)
C8—C5—C4 113.8 (4) C13'—C12'—H12C 109.7
C8—C5—C6 113.3 (4) N2'—C12'—H12C 109.7
C4—C5—C6 110.4 (3) C13'—C12'—H12D 109.7
C8—C5—H5 106.2 N2'—C12'—H12D 109.7
C4—C5—H5 106.2 H12C—C12'—H12D 108.2
C6—C5—H5 106.2 C15'—C13'—C14' 119 (2)
C7—C6—C5 111.1 (4) C15'—C13'—C12' 118.9 (18)
C7—C6—H6A 109.4 C14'—C13'—C12' 122 (2)
C5—C6—H6A 109.4 C13'—C14'—C15'v 131 (2)
C7—C6—H6B 109.4 C13'—C14'—H14' 114.4
C5—C6—H6B 109.4 C15'v—C14'—H14' 114.4
H6A—C6—H6B 108.0 C13'—C15'—C14'v 106 (2)
C6—C7—C2 112.0 (4) C13'—C15'—H15' 126.8
C6—C7—H7A 109.2 C14'v—C15'—H15' 126.8
C2—C7—H7A 109.2
N1—Ni—O1—C1 −153.4 (3) C11—N1—C9—C10 0.4 (6)
O2i—Ni—O1—C1 18.7 (8) Ni—N1—C9—C10 179.5 (4)
O3ii—Ni—O1—C1 106.0 (3) N1—C9—C10—N2 −1.1 (7)
O4iii—Ni—O1—C1 −61.3 (3) N1—C9—C10—N2' −1.1 (7)
Nii—Ni—O1—C1 6.1 (3) C9—N1—C11—N2 0.4 (6)
O2i—Ni—N1—C11 −144.6 (5) Ni—N1—C11—N2 −178.7 (3)
O3ii—Ni—N1—C11 124.7 (5) C9—N1—C11—N2' 0.4 (6)
O1—Ni—N1—C11 33.7 (5) Ni—N1—C11—N2' −178.7 (3)
O4iii—Ni—N1—C11 −54.7 (5) N2—C10—N2—C11 0(100)
Nii—Ni—N1—C11 −59.1 (7) C9—C10—N2—C11 1.3 (7)
O2i—Ni—N1—C9 36.5 (5) N2—C10—N2'—C12 0(100)
O3ii—Ni—N1—C9 −54.2 (5) C9—C10—N2'—C12 −177.6 (9)
O1—Ni—N1—C9 −145.2 (5) N1—C11—N2—C10 −1.1 (6)
O4iii—Ni—N1—C9 126.4 (5) N2—C11—N2—C10 0(100)
Nii—Ni—N1—C9 122.0 (5) N1—C11—N2'—C12 177.4 (12)
Nii—O2—C1—O1 4.6 (6) N2—C11—N2'—C12 0(100)
Nii—O2—C1—C2 −177.0 (3) C10—N2—C12—C13 −82.7 (13)
Ni—O1—C1—O2 −8.1 (6) C11—N2—C12—C13 98.9 (15)
Ni—O1—C1—C2 173.4 (3) N2—C12—C13—C14 124 (2)
O2—C1—C2—C3 153.7 (4) N2—C12—C13—C15 −55 (2)
O1—C1—C2—C3 −27.8 (5) C15—C13—C14—C15v −19 (3)
O2—C1—C2—C7 29.2 (5) C12—C13—C14—C15v 162.1 (17)
O1—C1—C2—C7 −152.3 (4) C14—C13—C15—C14v 24 (4)
C1—C2—C3—C4 −70.5 (5) C12—C13—C15—C14v −157 (2)
C7—C2—C3—C4 55.6 (5) N2—C10—N2—C11 0(100)
C2—C3—C4—C5 −57.3 (5) C9—C10—N2—C11 1.3 (7)
C3—C4—C5—C8 −174.8 (4) N2—C10—N2'—C12' 0(100)
C3—C4—C5—C6 56.5 (5) C9—C10—N2'—C12' 176.8 (11)
C8—C5—C6—C7 174.9 (3) N1—C11—N2—C10 −1.1 (6)
C4—C5—C6—C7 −56.2 (5) N2—C11—N2—C10 0(100)
C5—C6—C7—C2 55.8 (5) N1—C11—N2'—C12' −178.1 (8)
C1—C2—C7—C6 71.4 (5) N2—C11—N2'—C12' 0(100)
C3—C2—C7—C6 −54.6 (5) C10—N2'—C12'—C13' −62.7 (19)
Niiii—O4—C8—O3 8.4 (8) C11—N2'—C12'—C13' 112.6 (15)
Niiii—O4—C8—C5 −169.0 (3) N2'—C12'—C13'—C15' −86 (2)
Niiv—O3—C8—O4 −4.3 (5) N2'—C12'—C13'—C14' 94.8 (19)
Niiv—O3—C8—C5 173.0 (3) C15'—C13'—C14'—C15'v 22 (4)
C4—C5—C8—O4 −154.6 (4) C12'—C13'—C14'—C15'v −159 (2)
C6—C5—C8—O4 −27.4 (5) C14'—C13'—C15'—C14'v −17 (3)
C4—C5—C8—O3 27.9 (5) C12'—C13'—C15'—C14'v 163.9 (16)
C6—C5—C8—O3 155.1 (4)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z; (v) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2618).

References

  1. Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. Engl.37, 1460–1494. [DOI] [PubMed]
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Kim, Y. J. & Jung, D.-Y. (2002). Chem. Commun pp. 908–909. [DOI] [PubMed]
  6. Lee, S. W., Kim, H. J., Lee, Y. K., Park, K., Son, J.-H. & Kwon, Y.-U. (2003). Inorg. Chim. Acta, 353, 151–158.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029249/ng2618sup1.cif

e-65-m1012-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029249/ng2618Isup2.hkl

e-65-m1012-Isup2.hkl (127KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES