Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Aug;86(15):5859–5863. doi: 10.1073/pnas.86.15.5859

Tumor-elicited polymorphonuclear cells, in contrast to "normal" circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells.

D R Welch 1, D J Schissel 1, R P Howrey 1, P A Aeed 1
PMCID: PMC297730  PMID: 2762301

Abstract

Circulating polymorphonuclear cell (PMN) levels rise in proportion to the metastatic potential of the tumor in 13762NF mammary adenocarcinoma tumor-bearing rats. These tumor-elicited PMNs (tcPMNs) secrete high levels of the basement-membrane-degrading enzymes, type IV collagenase and heparanase, suggesting that metastatic tumor cells stimulate neutrophilia so that the tcPMNs might assist tumor cell extravasation during metastasis. To test this hypothesis, purified proteose peptone-elicited PMNs from peritoneal exudate, circulating normal PMNs, and tcPMNs were evaluated for their effects on in vitro invasive and in vivo metastatic potentials of syngeneic 13762NF mammary adenocarcinoma tumor cells. tcPMNs caused a dose-dependent increase in invasion through a reconstituted basement membrane barrier in an in vitro invasion assay. At PMN:tumor cell ratios of 30:1, invasion potential significantly (P less than 0.05) rose to 26-fold, 40-fold, and 37-fold for poorly metastatic MTLn2 cells, highly metastatic MTLn3 cells, and moderately metastatic MTF7 cells, respectively. In contrast, purified proteose peptone-elicited PMNs and circulating normal PMNs did not significantly alter invasive potential. Intravenous coinjections of purified proteose peptone-elicited PMNs did not change the number of experimental lung metastases, but tcPMNs at ratios to 50:1 significantly raised the mean number of metastases 23-fold for MTLn2, 3- to 4-fold for MTLn3, and 1.6- to 1.8-fold for MTF7. These results demonstrate that tcPMNs contribute to the metastatic propensity of mammary adenocarcinoma clones by increasing efficiency of invasion through basement membrane.

Full text

PDF
5859

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aeed P. A., Nakajima M., Welch D. R. The role of polymorphonuclear leukocytes (PMN) on the growth and metastatic potential of 13762NF mammary adenocarcinoma cells. Int J Cancer. 1988 Nov 15;42(5):748–759. doi: 10.1002/ijc.2910420521. [DOI] [PubMed] [Google Scholar]
  2. Atnip K. D., Carter L. M., Nicolson G. L., Dabbous M. K. Chemotactic response of rat mammary adenocarcinoma cell clones to tumor-derived cytokines. Biochem Biophys Res Commun. 1987 Aug 14;146(3):996–1002. doi: 10.1016/0006-291x(87)90746-7. [DOI] [PubMed] [Google Scholar]
  3. Crissman J. D., Hatfield J., Schaldenbrand M., Sloane B. F., Honn K. V. Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab Invest. 1985 Oct;53(4):470–478. [PubMed] [Google Scholar]
  4. Dabbous M. K., Haney L., Carter L. M., Paul A. K., Reger J. Heterogeneity of fibroblast response in host-tumor cell-cell interactions in metastatic tumors. J Cell Biochem. 1987 Dec;35(4):333–344. doi: 10.1002/jcb.240350408. [DOI] [PubMed] [Google Scholar]
  5. Dabbous M. K., North S. M., Haney L., Nicolson G. L. Macrophage and lymphocyte potentiation of syngeneic tumor cell and host fibroblast collagenolytic activity in rats. Cancer Res. 1988 Dec 1;48(23):6832–6836. [PubMed] [Google Scholar]
  6. Dabbous M. K., Walker R., Haney L., Carter L. M., Nicolson G. L., Woolley D. E. Mast cells and matrix degradation at sites of tumour invasion in rat mammary adenocarcinoma. Br J Cancer. 1986 Sep;54(3):459–465. doi: 10.1038/bjc.1986.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dabbous M. K., Woolley D. E., Haney L., Carter L. M., Nicolson G. L. Host-mediated effectors of tumor invasion: role of mast cells in matrix degradation. Clin Exp Metastasis. 1986 Apr-Jun;4(2):141–152. doi: 10.1007/BF00119080. [DOI] [PubMed] [Google Scholar]
  8. Fidler I. J., Gersten D. M., Budmen M. B. Characterization in vivo and in vitro of tumor cells selected for resistance to syngeneic lymphocyte-mediated cytotoxicity. Cancer Res. 1976 Sep;36(9 PT1):3160–3165. [PubMed] [Google Scholar]
  9. Goldfarb R. H., Liotta L. A. Proteolytic enzymes in cancer invasion and metastasis. Semin Thromb Hemost. 1986 Oct;12(4):294–307. doi: 10.1055/s-2007-1003570. [DOI] [PubMed] [Google Scholar]
  10. Gorelik E., Wiltrout R. H., Copeland D., Herberman R. B. Modulation of formation of tumor metastases by peritoneal macrophages elicited by various agents. Cancer Immunol Immunother. 1985;19(1):35–42. doi: 10.1007/BF00199309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hendrix M. J., Seftor E. A., Seftor R. E., Fidler I. J. A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett. 1987 Dec;38(1-2):137–147. doi: 10.1016/0304-3835(87)90209-6. [DOI] [PubMed] [Google Scholar]
  12. Hibbs M. S., Hasty K. A., Kang A. H., Mainardi C. L. Secretion of collagenolytic enzymes by human polymorphonuclear leukocytes. Coll Relat Res. 1984 Dec;4(6):467–477. doi: 10.1016/s0174-173x(84)80013-8. [DOI] [PubMed] [Google Scholar]
  13. Hoover R. L., Folger R., Haering W. A., Ware B. R., Karnovsky M. J. Adhesion of leukocytes to endothelium: roles of divalent cations, surface charge, chemotactic agents and substrate. J Cell Sci. 1980 Oct;45:73–86. doi: 10.1242/jcs.45.1.73. [DOI] [PubMed] [Google Scholar]
  14. Horak E., Darling D. L., Tarin D. Analysis of organ-specific effects on metastatic tumor formation by studies in vitro. J Natl Cancer Inst. 1986 May;76(5):913–922. [PubMed] [Google Scholar]
  15. Lee M. Y., Baylink D. J. Hypercalcemia, excessive bone resorption, and neutrophilia in mice bearing a mammary carcinoma. Proc Soc Exp Biol Med. 1983 Apr;172(4):424–429. doi: 10.3181/00379727-172-41582. [DOI] [PubMed] [Google Scholar]
  16. Liotta L. A., Saidel M. G., Kleinerman J. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 1976 Mar;36(3):889–894. [PubMed] [Google Scholar]
  17. Menter D. G., Hatfield J. S., Harkins C., Sloane B. F., Taylor J. D., Crissman J. D., Honn K. V. Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clin Exp Metastasis. 1987 Jan-Mar;5(1):65–78. doi: 10.1007/BF00116627. [DOI] [PubMed] [Google Scholar]
  18. Miller F. R. Tumor subpopulation interactions in metastasis. Invasion Metastasis. 1983;3(4):234–242. [PubMed] [Google Scholar]
  19. Moser R., Schleiffenbaum B., Groscurth P., Fehr J. Interleukin 1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutrophil passage. J Clin Invest. 1989 Feb;83(2):444–455. doi: 10.1172/JCI113903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Neri A., Welch D., Kawaguchi T., Nicolson G. L. Development and biologic properties of malignant cell sublines and clones of a spontaneously metastasizing rat mammary adenocarcinoma. J Natl Cancer Inst. 1982 Mar;68(3):507–517. [PubMed] [Google Scholar]
  21. Nicolson G. L. Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta. 1988 Nov 15;948(2):175–224. doi: 10.1016/0304-419x(88)90010-8. [DOI] [PubMed] [Google Scholar]
  22. Nicolson G. L., Dulski K. M. Organ specificity of metastatic tumor colonization is related to organ-selective growth properties of malignant cells. Int J Cancer. 1986 Aug 15;38(2):289–294. doi: 10.1002/ijc.2910380221. [DOI] [PubMed] [Google Scholar]
  23. Nicolson G. L., Poste G. Tumor cell diversity and host responses in cancer metastasis--part II--host immune responses and therapy of metastases. Curr Probl Cancer. 1983 Jan;7(7):1–42. doi: 10.1016/s0147-0272(83)80005-1. [DOI] [PubMed] [Google Scholar]
  24. Orr F. W., Warner D. J. Effects of neutrophil-mediated pulmonary endothelial injury on the localization and metastasis of circulating Walker carcinosarcoma cells. Invasion Metastasis. 1987;7(3):183–196. [PubMed] [Google Scholar]
  25. Pauli B. U., Knudson W. Tumor invasion: a consequence of destructive and compositional matrix alterations. Hum Pathol. 1988 Jun;19(6):628–639. doi: 10.1016/s0046-8177(88)80168-0. [DOI] [PubMed] [Google Scholar]
  26. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. doi: 10.1126/science.6301011. [DOI] [PubMed] [Google Scholar]
  27. Schalkwijk J., van den Berg W. B., van de Putte L. B., Joosten L. A. Elastase secreted by activated polymorphonuclear leucocytes causes chondrocyte damage and matrix degradation in intact articular cartilage: escape from inactivation by alpha-1-proteinase inhibitor. Br J Exp Pathol. 1987 Feb;68(1):81–88. [PMC free article] [PubMed] [Google Scholar]
  28. Starkey J. R., Liggitt H. D., Jones W., Hosick H. L. Influence of migratory blood cells on the attachment of tumor cells to vascular endothelium. Int J Cancer. 1984 Oct 15;34(4):535–543. doi: 10.1002/ijc.2910340417. [DOI] [PubMed] [Google Scholar]
  29. Terranova V. P., DiFlorio R., Hujanen E. S., Lyall R. M., Liotta L. A., Thorgeirsson U., Siegal G. P., Schiffmann E. Laminin promotes rabbit neutrophil motility and attachment. J Clin Invest. 1986 Apr;77(4):1180–1186. doi: 10.1172/JCI112419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Updyke T. V., Nicolson G. L. Malignant melanoma cell lines selected in vitro for increased homotypic adhesion properties have increased experimental metastatic potential. Clin Exp Metastasis. 1986 Oct-Dec;4(4):273–284. doi: 10.1007/BF00133592. [DOI] [PubMed] [Google Scholar]
  31. Vlodavsky I., Folkman J., Sullivan R., Fridman R., Ishai-Michaeli R., Sasse J., Klagsbrun M. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2292–2296. doi: 10.1073/pnas.84.8.2292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weiss S. J., Curnutte J. T., Regiani S. Neutrophil-mediated solubilization of the subendothelial matrix: oxidative and nonoxidative mechanisms of proteolysis used by normal and chronic granulomatous disease phagocytes. J Immunol. 1986 Jan;136(2):636–641. [PubMed] [Google Scholar]
  33. Weissmann G. Leukocytes as secretory organs of inflammation. Hosp Pract. 1978 Sep;13(9):53–62. doi: 10.1080/21548331.1978.11707397. [DOI] [PubMed] [Google Scholar]
  34. Welch D. R., Lobl T. J., Seftor E. A., Wack P. J., Aeed P. A., Yohem K. H., Seftor R. E., Hendrix M. J. Use of the Membrane Invasion Culture System (MICS) as a screen for anti-invasive agents. Int J Cancer. 1989 Mar 15;43(3):449–457. doi: 10.1002/ijc.2910430318. [DOI] [PubMed] [Google Scholar]
  35. Welch D. R., Neri A., Nicolson G. L. Comparison of 'spontaneous' and 'experimental' metastasis using rat 13762 mammary adenocarcinoma metastatic cell clones. Invasion Metastasis. 1983;3(2):65–80. [PubMed] [Google Scholar]
  36. Wright D. G., Gallin J. I. Secretory responses of human neutrophils: exocytosis of specific (secondary) granules by human neutrophils during adherence in vitro and during exudation in vivo. J Immunol. 1979 Jul;123(1):285–294. [PubMed] [Google Scholar]
  37. Zurier R. B., Hoffstein S., Weissmann G. Mechanisms of lysosomal enzyme release from human leukocytes. I. Effect of cyclic nucleotides and colchicine. J Cell Biol. 1973 Jul;58(1):27–41. doi: 10.1083/jcb.58.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES