Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 4;65(Pt 8):o1781–o1782. doi: 10.1107/S1600536809024775

2-Acetamido-2-de­oxy-3-O-β-d-galactopyranosyl-d-glucose dihydrate

Masahisa Wada a,*, Kayoko Kobayashi a, Mamoru Nishimoto b, Motomitsu Kitaoka b, Keiichi Noguchi c
PMCID: PMC2977301  PMID: 21583488

Abstract

In the title compound, C14H25NO11·2H2O, the primary hydroxyl group connected to the anomeric C atom of the N-acetyl-β-d-glucopyran­ose residue exhibits positional disorder, with occupancy factors for the α and β anomers of 0.77 and 0.23, respectively. The two torsion angles (Φ and Ψ) and the bridge angle (τ) that describe conformation of the glycosidic linkage between the galactopyran­ose and glucopyran­ose rings are Φ = −81.6 (3)°, Ψ = 118.1 (2)° and τ = 115.2 (2)°. Two water mol­ecules stabilize the mol­ecular packing by forming hydrogen bonds with the saccharide residues.

Related literature

For the synthesis of the title compound, see: Kitaoka et al. (2005); Nishimoto & Kitaoka (2007a ,b ). For the conformation of saccharide rings, see: Cremer & Pople (1975).graphic file with name e-65-o1781-scheme1.jpg

Experimental

Crystal data

  • C14H25NO11·2H2O

  • M r = 419.38

  • Orthorhombic, Inline graphic

  • a = 8.284 (1) Å

  • b = 12.841 (1) Å

  • c = 17.503 (1) Å

  • V = 1861.9 (3) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.80000 Å

  • μ = 0.13 mm−1

  • T = 95 K

  • 0.10 × 0.10 × 0.10 mm

Data collection

  • ADSC Quantum 210r diffractometer

  • Absorption correction: none

  • 25787 measured reflections

  • 2153 independent reflections

  • 2046 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.115

  • S = 1.06

  • 2153 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: UGUI (Structural Biology Research Center, 2005); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024775/is2433sup1.cif

e-65-o1781-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024775/is2433Isup2.hkl

e-65-o1781-Isup2.hkl (103.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond and torsion angles (°).

C1—O1—C9 115.2 (2)
O5—C1—O1—C9 −81.6 (3)
C2—C1—O1—C9 159.0 (2)
C1—O1—C9—C10 118.0 (2)
C1—O1—C9—C8 −123.3 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2Wi 0.88 2.05 2.923 (3) 169
O2—H2O⋯O12ii 0.85 1.80 2.642 (3) 170
O3—H3O⋯O2W 0.85 1.86 2.702 (3) 169
O4—H4O⋯O13ii 0.93 1.95 2.803 (3) 150
O6—H6O⋯O1Wiii 0.85 1.79 2.624 (3) 168
O10—H10O⋯O6iv 0.96 1.81 2.705 (3) 154
O1W—H11W⋯O10iv 0.85 1.85 2.696 (3) 175
O12—H12O⋯O13v 0.85 1.96 2.784 (3) 162
O1W—H12W⋯O4 0.87 1.90 2.759 (3) 173
O2W—H21W⋯O11vi 0.90 1.94 2.772 (3) 154
O2W—H22W⋯O6vii 0.85 1.91 2.757 (3) 171
O71—H71O⋯O2i 0.86 1.87 2.683 (3) 159
O72—H72O⋯O1Wv 0.84 2.04 2.545 (9) 119

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

This study was supported in part by a grant from the Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) of Japan.

supplementary crystallographic information

Comment

It is widely accepted that oligosaccharides other than lactose in human milk (human milk oligosaccharides, HMOs) play a key role in the growth of Bifidobacteria in the gut. Bifidobacteria, Gram-positive anaerobes, are considered to be beneficial for human health. Recently, a unique metabolic pathway specific for lacto-N-biose I (Gal-β1→3GlcNAc, LNB) was found using Bifidobacteria (Kitaoka et al., 2005; Nishimoto & Kitaoka, 2007a). LNB is one of the basic core disaccharides of HMOs and is suggested to be a bifidus factor.

The molecular structure of compound (I) is shown in Fig. 1. There are two water molecules per LNB molecule in the crystal lattice. The primary hydroxyl group connected to the anomeric carbon atom of the GlcNAc residue exhibits disorder, with occupancy factors of O71 (α anomer) and O72 (β anomer) of 0.77 and 0.23, respectively.

The Gal ring is close to the ideal 4C1 chair conformation with ring puckering parameters (Cremer & Pople, 1975) of Q = 0.556 (3) Å, Θ = 7.1 (3)° and Φ = 353 (2)° for the atom sequence O5—C1—C2—C3—C4—C5. The other GlcNAc ring is also close to the ideal chair conformation, with Q = 0.618 (3) Å, Θ = 3.8 (3)°, and Φ = 198 (4)° for the atom sequence O11—C7—C8—C9—C10—C11.

The conformation about the linkage between the Gal and GlcNAc rings is characterized by the torsion angles of Φ (O5—C1—O1—C9) and Ψ (C1—O1—C9—C10), and the bridge angle τ (C1—O1—C9). The values obtained in this study are Φ = -81.6 (3)°, Ψ = 118.1 (2)° and τ = 115.2 (2)° (Table 1).

The conformation of the hydroxymethyl group is defined by two sets of torsion angle: χ and χ'. The values for the Gal ring were χ (O5—C5—C6—O6) = 79.5 (3)° and χ' (C4—C5—C6—O6) = -157.9 (2)°, indicating values close to the gt conformation. The values for the GlcNAc ring are χ (O11—C11—C12—O12) = -64.1 (3)° and χ' (C10—C11—C12—O12) = 57.9 (3)°, indicating the gg conformation.

Both saccharide rings lie approximately parallel to the bc plane and the intermolecular hydrogen bonds were only along the a-axis (Table 2). Two water molecules stabilize the molecular packing by forming hydrogen bonds with sugar molecules in three dimensions.

Experimental

Compound (I) was synthesized from sucrose and GlcNAc by the concurrent action of four enzymes: sucrose phosphorylase, UDP-glucose-hexose-1-phosphate uridylyltransferase, UDP-glucose 4-epimerase, and lacto-N-biose phosphorylase (Nishimoto & Kitaoka, 2007b). Single crystals suitable for X-ray analysis were obtained by slow diffusion of ethanol into an aqueous solution.

Refinement

The anomalous scattering signal of (I) is too weak to predict the accurate absolute structure. Therefore, the merging of Friedel pair data was performed before the final refinement. The hydroxyl H atoms in the saccharides and water molecules, except for H72O, were located in a difference Fourier map. The H72O atom was positioned using the HFIX 83 instruction in the SHELXL97 software package, with O—H = 0.84 Å. These hydroxyl H atoms were subsequently refined as a riding model, with Uiso(H) = 1.2Ueq(O). The methine, methylene, methyl and amide H atoms were positioned using the HFIX 13, HFIX 23, HFIX 137 and HFIX 43 instructions, with C—H = 1.00, 0.99, 0.98 and 0.88 Å, respectively. These C- and N-bound H atoms were also refined as a riding model, with Uiso(H) = 1.2Ueq(C) for the methine, methylene and amide H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot and atomic numbering scheme of compound (I). The ellipsoids are drawn at the 50% probability level, and the H atoms are shown as small spheres with arbitrary radii. Broken lines indicate hydrogen bonds. The minor conformer of the disordered part has been omitted for clarity.

Crystal data

C14H25NO11·2H2O F(000) = 896
Mr = 419.38 Dx = 1.496 Mg m3
Orthorhombic, P212121 Synchrotron radiation, λ = 0.80000 Å
Hall symbol: P 2ac 2ab Cell parameters from 25787 reflections
a = 8.284 (1) Å θ = 2.2–30.0°
b = 12.841 (1) Å µ = 0.13 mm1
c = 17.503 (1) Å T = 95 K
V = 1861.9 (3) Å3 Block, colorless
Z = 4 0.10 × 0.10 × 0.10 mm

Data collection

ADSC Quantum 210r diffractometer 2046 reflections with I > 2σ(I)
Radiation source: Photon Facrory NW12A Rint = 0.047
silicon θmax = 30.0°, θmin = 2.2°
Detector resolution: 9.7466 pixels mm-1 h = −10→10
ω scans k = −16→16
25787 measured reflections l = −21→21
2153 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difmap&geom
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0806P)2 + 0.7215P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2153 reflections Δρmax = 0.27 e Å3
264 parameters Δρmin = −0.31 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.084 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.7021 (3) 0.32502 (19) 0.34879 (14) 0.0205 (5)
H1 0.8227 0.3214 0.3471 0.025*
C2 0.6435 (3) 0.4253 (2) 0.31127 (15) 0.0211 (5)
H2 0.5234 0.4232 0.3059 0.025*
C3 0.6921 (3) 0.52070 (19) 0.35853 (15) 0.0215 (5)
H3 0.8113 0.5310 0.3535 0.026*
C4 0.6518 (3) 0.5082 (2) 0.44263 (16) 0.0226 (6)
H4 0.7071 0.5646 0.4721 0.027*
C5 0.7119 (4) 0.4031 (2) 0.47122 (15) 0.0235 (6)
H5 0.8323 0.4017 0.4671 0.028*
C6 0.6658 (4) 0.3832 (2) 0.55375 (16) 0.0279 (6)
H61 0.6722 0.4494 0.5826 0.033*
H62 0.5526 0.3585 0.5559 0.033*
O1 0.6358 (2) 0.24111 (13) 0.30922 (11) 0.0217 (4)
O2 0.7150 (2) 0.43673 (14) 0.23805 (11) 0.0241 (4)
H2O 0.6648 0.4055 0.2024 0.029*
O3 0.6135 (3) 0.61167 (14) 0.33229 (11) 0.0261 (5)
H3O 0.6709 0.6420 0.2988 0.031*
O4 0.4818 (3) 0.51573 (15) 0.45519 (11) 0.0268 (5)
H4O 0.4508 0.5788 0.4331 0.032*
O5 0.6475 (2) 0.31996 (13) 0.42597 (10) 0.0219 (4)
O6 0.7678 (3) 0.30802 (14) 0.58916 (11) 0.0266 (5)
H6O 0.7491 0.2462 0.5742 0.032*
C7 0.8597 (3) −0.00264 (19) 0.25298 (15) 0.0220 (5)
H71 0.8919 −0.0327 0.2025 0.026* 0.77
H72 0.9533 0.0120 0.2874 0.026* 0.23
C8 0.7699 (3) 0.10082 (19) 0.24040 (15) 0.0213 (5)
H8 0.6707 0.0870 0.2094 0.026*
C9 0.7191 (3) 0.14403 (19) 0.31837 (15) 0.0206 (5)
H9 0.8171 0.1549 0.3508 0.025*
C10 0.6100 (3) 0.06275 (19) 0.35568 (15) 0.0213 (5)
H10 0.5151 0.0491 0.3218 0.026*
C11 0.7058 (3) −0.03748 (19) 0.36589 (15) 0.0218 (5)
H11 0.8047 −0.0211 0.3964 0.026*
C12 0.6157 (4) −0.1242 (2) 0.40603 (16) 0.0248 (6)
H121 0.6855 −0.1866 0.4092 0.030*
H122 0.5888 −0.1022 0.4587 0.030*
O71 0.9959 (3) 0.01943 (18) 0.29538 (14) 0.0217 (5) 0.77
H71O 1.0752 −0.0218 0.2860 0.026* 0.77
O72 0.9226 (12) −0.0517 (7) 0.1856 (5) 0.031 (2) 0.23
H72O 0.8861 −0.0216 0.1467 0.037* 0.23
O10 0.5548 (3) 0.09459 (15) 0.42885 (11) 0.0251 (5)
H10O 0.4729 0.1468 0.4241 0.030*
O11 0.7561 (2) −0.07395 (14) 0.29198 (11) 0.0229 (4)
O12 0.4722 (3) −0.1495 (2) 0.36648 (17) 0.0485 (7)
H12O 0.4325 −0.2091 0.3760 0.058*
N1 0.8734 (3) 0.17181 (16) 0.19831 (13) 0.0214 (5)
H1N 0.9621 0.1942 0.2205 0.026*
C13 0.8410 (3) 0.20474 (19) 0.12798 (16) 0.0220 (6)
O13 0.7167 (3) 0.18034 (14) 0.09211 (11) 0.0258 (4)
C14 0.9628 (4) 0.2771 (2) 0.09275 (17) 0.0312 (7)
H141 1.0519 0.2884 0.1287 0.047*
H142 0.9112 0.3438 0.0810 0.047*
H143 1.0048 0.2461 0.0456 0.047*
O1W 0.2143 (3) 0.39008 (16) 0.43738 (13) 0.0370 (6)
H11W 0.1688 0.3974 0.4806 0.044*
H12W 0.2950 0.4330 0.4398 0.044*
O2W 0.8087 (2) 0.72473 (14) 0.24058 (11) 0.0247 (4)
H21W 0.7630 0.7867 0.2498 0.030*
H22W 0.7901 0.7083 0.1942 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0228 (13) 0.0155 (11) 0.0234 (12) −0.0008 (11) 0.0008 (11) −0.0003 (9)
C2 0.0226 (13) 0.0174 (12) 0.0234 (12) −0.0030 (10) 0.0052 (11) 0.0017 (10)
C3 0.0216 (12) 0.0146 (11) 0.0284 (13) −0.0008 (10) 0.0015 (11) 0.0010 (10)
C4 0.0235 (13) 0.0161 (11) 0.0282 (13) 0.0002 (11) 0.0020 (11) 0.0000 (10)
C5 0.0270 (13) 0.0168 (11) 0.0266 (13) −0.0004 (11) −0.0002 (11) 0.0000 (10)
C6 0.0334 (16) 0.0232 (13) 0.0271 (14) 0.0061 (12) 0.0018 (12) 0.0011 (11)
O1 0.0240 (10) 0.0130 (8) 0.0280 (9) 0.0006 (8) −0.0020 (8) −0.0001 (7)
O2 0.0269 (10) 0.0221 (9) 0.0233 (9) −0.0041 (8) 0.0020 (8) 0.0008 (7)
O3 0.0302 (11) 0.0151 (8) 0.0329 (10) 0.0033 (8) 0.0029 (9) 0.0043 (7)
O4 0.0272 (10) 0.0196 (9) 0.0336 (10) 0.0058 (8) 0.0065 (9) 0.0026 (8)
O5 0.0286 (10) 0.0147 (8) 0.0225 (9) 0.0002 (8) 0.0013 (8) −0.0005 (7)
O6 0.0311 (11) 0.0193 (9) 0.0293 (10) 0.0021 (8) −0.0036 (8) 0.0022 (8)
C7 0.0244 (13) 0.0165 (11) 0.0251 (12) −0.0016 (11) 0.0001 (11) 0.0006 (10)
C8 0.0255 (13) 0.0146 (11) 0.0237 (12) −0.0025 (11) 0.0002 (11) 0.0029 (10)
C9 0.0212 (12) 0.0138 (11) 0.0268 (12) 0.0010 (11) −0.0009 (11) 0.0000 (10)
C10 0.0254 (14) 0.0160 (11) 0.0225 (12) 0.0003 (11) 0.0018 (11) −0.0005 (10)
C11 0.0252 (13) 0.0162 (11) 0.0241 (12) 0.0004 (11) 0.0004 (11) −0.0004 (10)
C12 0.0257 (14) 0.0182 (12) 0.0304 (13) 0.0001 (11) −0.0022 (12) 0.0039 (11)
O71 0.0196 (11) 0.0169 (11) 0.0284 (12) 0.0029 (10) −0.0022 (10) −0.0015 (9)
O72 0.039 (5) 0.024 (4) 0.028 (4) 0.008 (4) 0.011 (4) 0.001 (4)
O10 0.0307 (11) 0.0200 (9) 0.0246 (9) 0.0042 (8) 0.0048 (8) 0.0018 (8)
O11 0.0289 (10) 0.0153 (8) 0.0246 (9) −0.0021 (8) 0.0027 (8) −0.0012 (7)
O12 0.0368 (13) 0.0384 (12) 0.0703 (17) −0.0204 (11) −0.0240 (13) 0.0300 (12)
N1 0.0208 (10) 0.0168 (10) 0.0268 (11) −0.0020 (9) 0.0010 (9) 0.0007 (9)
C13 0.0235 (13) 0.0148 (11) 0.0278 (12) −0.0005 (10) −0.0005 (11) 0.0002 (10)
O13 0.0256 (10) 0.0232 (9) 0.0286 (10) −0.0046 (8) −0.0015 (8) 0.0015 (8)
C14 0.0330 (16) 0.0308 (14) 0.0298 (14) −0.0107 (13) 0.0024 (12) 0.0058 (12)
O1W 0.0484 (14) 0.0261 (10) 0.0365 (12) −0.0066 (11) 0.0090 (11) −0.0014 (9)
O2W 0.0292 (10) 0.0169 (8) 0.0280 (9) 0.0031 (8) −0.0015 (9) −0.0020 (7)

Geometric parameters (Å, °)

C1—O1 1.394 (3) C8—N1 1.452 (3)
C1—O5 1.426 (3) C8—C9 1.532 (4)
C1—C2 1.525 (3) C8—H8 1.0000
C1—H1 1.0000 C9—C10 1.528 (4)
C2—O2 1.419 (3) C9—H9 1.0000
C2—C3 1.532 (3) C10—O10 1.420 (3)
C2—H2 1.0000 C10—C11 1.523 (3)
C3—O3 1.414 (3) C10—H10 1.0000
C3—C4 1.518 (4) C11—O11 1.437 (3)
C3—H3 1.0000 C11—C12 1.514 (4)
C4—O4 1.429 (3) C11—H11 1.0000
C4—C5 1.523 (3) C12—O12 1.413 (4)
C4—H4 1.0000 C12—H121 0.9900
C5—O5 1.432 (3) C12—H122 0.9900
C5—C6 1.516 (4) O71—H71O 0.8594
C5—H5 1.0000 O72—H72O 0.8400
C6—O6 1.425 (3) O10—H10O 0.9571
C6—H61 0.9900 O12—H12O 0.8497
C6—H62 0.9900 N1—C13 1.329 (4)
O1—C9 1.434 (3) N1—H1N 0.8800
O2—H2O 0.8500 C13—O13 1.246 (4)
O3—H3O 0.8500 C13—C14 1.504 (4)
O4—H4O 0.9338 C14—H141 0.9800
O6—H6O 0.8499 C14—H142 0.9800
C7—O71 1.380 (4) C14—H143 0.9800
C7—O11 1.428 (3) O1W—H11W 0.8500
C7—O72 1.435 (9) O1W—H12W 0.8676
C7—C8 1.538 (3) O2W—H21W 0.8963
C7—H71 1.0000 O2W—H22W 0.8523
C7—H72 1.0000
O1—C1—O5 108.1 (2) O72—C7—H72 107.2
O1—C1—C2 108.3 (2) C8—C7—H72 107.4
O5—C1—C2 110.2 (2) N1—C8—C9 112.7 (2)
O1—C1—H1 110.1 N1—C8—C7 109.2 (2)
O5—C1—H1 110.1 C9—C8—C7 108.5 (2)
C2—C1—H1 110.1 N1—C8—H8 108.8
O2—C2—C1 110.1 (2) C9—C8—H8 108.8
O2—C2—C3 107.2 (2) C7—C8—H8 108.8
C1—C2—C3 111.0 (2) O1—C9—C10 110.9 (2)
O2—C2—H2 109.5 O1—C9—C8 110.3 (2)
C1—C2—H2 109.5 C10—C9—C8 107.2 (2)
C3—C2—H2 109.5 O1—C9—H9 109.5
O3—C3—C4 107.5 (2) C10—C9—H9 109.5
O3—C3—C2 111.3 (2) C8—C9—H9 109.5
C4—C3—C2 112.4 (2) O10—C10—C11 107.8 (2)
O3—C3—H3 108.5 O10—C10—C9 112.3 (2)
C4—C3—H3 108.5 C11—C10—C9 108.6 (2)
C2—C3—H3 108.5 O10—C10—H10 109.4
O4—C4—C3 111.0 (2) C11—C10—H10 109.4
O4—C4—C5 109.4 (2) C9—C10—H10 109.4
C3—C4—C5 109.9 (2) O11—C11—C12 108.7 (2)
O4—C4—H4 108.8 O11—C11—C10 108.7 (2)
C3—C4—H4 108.8 C12—C11—C10 114.8 (2)
C5—C4—H4 108.8 O11—C11—H11 108.2
O5—C5—C6 107.9 (2) C12—C11—H11 108.2
O5—C5—C4 110.9 (2) C10—C11—H11 108.2
C6—C5—C4 112.3 (2) O12—C12—C11 110.9 (2)
O5—C5—H5 108.5 O12—C12—H121 109.5
C6—C5—H5 108.5 C11—C12—H121 109.5
C4—C5—H5 108.5 O12—C12—H122 109.5
O6—C6—C5 112.3 (2) C11—C12—H122 109.5
O6—C6—H61 109.2 H121—C12—H122 108.0
C5—C6—H61 109.2 C7—O71—H71O 113.3
O6—C6—H62 109.2 C7—O72—H72O 109.5
C5—C6—H62 109.2 C10—O10—H10O 110.6
H61—C6—H62 107.9 C7—O11—C11 113.28 (19)
C1—O1—C9 115.2 (2) C12—O12—H12O 115.9
C2—O2—H2O 114.2 C13—N1—C8 123.4 (2)
C3—O3—H3O 110.2 C13—N1—H1N 118.3
C4—O4—H4O 105.5 C8—N1—H1N 118.3
C1—O5—C5 111.8 (2) O13—C13—N1 123.6 (3)
C6—O6—H6O 113.0 O13—C13—C14 120.2 (2)
O71—C7—O11 111.5 (2) N1—C13—C14 116.2 (2)
O11—C7—O72 109.2 (4) C13—C14—H141 109.5
O71—C7—C8 107.1 (2) C13—C14—H142 109.5
O11—C7—C8 109.4 (2) H141—C14—H142 109.5
O72—C7—C8 115.9 (4) C13—C14—H143 109.5
O71—C7—H71 109.6 H141—C14—H143 109.5
O11—C7—H71 109.6 H142—C14—H143 109.5
C8—C7—H71 109.6 H11W—O1W—H12W 103.1
O11—C7—H72 107.4 H21W—O2W—H22W 108.4
O1—C1—C2—O2 −69.5 (3) O11—C7—C8—C9 58.8 (3)
O5—C1—C2—O2 172.4 (2) O72—C7—C8—C9 −177.2 (5)
O1—C1—C2—C3 171.9 (2) C1—O1—C9—C10 118.0 (2)
O5—C1—C2—C3 53.9 (3) C1—O1—C9—C8 −123.3 (2)
O2—C2—C3—O3 70.7 (3) N1—C8—C9—O1 58.5 (3)
C1—C2—C3—O3 −169.0 (2) C7—C8—C9—O1 179.6 (2)
O2—C2—C3—C4 −168.6 (2) N1—C8—C9—C10 179.3 (2)
C1—C2—C3—C4 −48.3 (3) C7—C8—C9—C10 −59.5 (3)
O3—C3—C4—O4 50.3 (3) O1—C9—C10—O10 −59.4 (3)
C2—C3—C4—O4 −72.6 (3) C8—C9—C10—O10 −179.9 (2)
O3—C3—C4—C5 171.5 (2) O1—C9—C10—C11 −178.5 (2)
C2—C3—C4—C5 48.6 (3) C8—C9—C10—C11 61.0 (3)
O4—C4—C5—O5 66.6 (3) O10—C10—C11—O11 177.2 (2)
C3—C4—C5—O5 −55.5 (3) C9—C10—C11—O11 −60.9 (3)
O4—C4—C5—C6 −54.2 (3) O10—C10—C11—C12 55.2 (3)
C3—C4—C5—C6 −176.4 (2) C9—C10—C11—C12 177.1 (2)
O5—C5—C6—O6 79.5 (3) O11—C11—C12—O12 −64.1 (3)
C4—C5—C6—O6 −157.9 (2) C10—C11—C12—O12 57.9 (3)
O5—C1—O1—C9 −81.6 (3) O71—C7—O11—C11 57.6 (3)
C2—C1—O1—C9 159.0 (2) O72—C7—O11—C11 171.4 (5)
O1—C1—O5—C5 179.3 (2) C8—C7—O11—C11 −60.7 (3)
C2—C1—O5—C5 −62.6 (3) C12—C11—O11—C7 −172.7 (2)
C6—C5—O5—C1 −172.6 (2) C10—C11—O11—C7 61.8 (3)
C4—C5—O5—C1 64.0 (3) C9—C8—N1—C13 −125.0 (3)
O71—C7—C8—N1 61.1 (3) C7—C8—N1—C13 114.2 (3)
O11—C7—C8—N1 −178.0 (2) C8—N1—C13—O13 2.1 (4)
O72—C7—C8—N1 −53.9 (5) C8—N1—C13—C14 −179.2 (2)
O71—C7—C8—C9 −62.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2Wi 0.88 2.05 2.923 (3) 169
O2—H2O···O12ii 0.85 1.80 2.642 (3) 170
O3—H3O···O2W 0.85 1.86 2.702 (3) 169
O4—H4O···O13ii 0.93 1.95 2.803 (3) 150
O6—H6O···O1Wiii 0.85 1.79 2.624 (3) 168
O10—H10O···O6iv 0.96 1.81 2.705 (3) 154
O1W—H11W···O10iv 0.85 1.85 2.696 (3) 175
O12—H12O···O13v 0.85 1.96 2.784 (3) 162
O1W—H12W···O4 0.87 1.90 2.759 (3) 173
O2W—H21W···O11vi 0.90 1.94 2.772 (3) 154
O2W—H22W···O6vii 0.85 1.91 2.757 (3) 171
O71—H71O···O2i 0.86 1.87 2.683 (3) 159
O72—H72O···O1Wv 0.84 2.04 2.545 (9) 119

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x+1/2, −y+1/2, −z+1; (iv) x−1/2, −y+1/2, −z+1; (v) −x+1, y−1/2, −z+1/2; (vi) x, y+1, z; (vii) −x+3/2, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2433).

References

  1. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  3. Kitaoka, M., Tian, J. & Nishimoto, M. (2005). Appl. Environ. Microbiol.71, 3158–3162. [DOI] [PMC free article] [PubMed]
  4. Nishimoto, M. & Kitaoka, M. (2007a). Appl. Environ. Microbiol.73, 6444–6449. [DOI] [PMC free article] [PubMed]
  5. Nishimoto, M. & Kitaoka, M. (2007b). Biosci. Biotechnol. Biochem.71, 2101–2104. [DOI] [PubMed]
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp.307–326. New York: Academic Press.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Structural Biology Research Center (2005). Unified Graphical User Interface (UGUI) Structural Biology Research Center, Photon Factory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024775/is2433sup1.cif

e-65-o1781-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024775/is2433Isup2.hkl

e-65-o1781-Isup2.hkl (103.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES