Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 22;65(Pt 8):m957. doi: 10.1107/S1600536809027937

Dichloridobis{6-methyl-2-[(trimethyl­silyl)amino]pyridine-κN 1}cobalt(II)

Xiaoyan Xue a, Xia Chen a,*, Hongbo Tong b
PMCID: PMC2977306  PMID: 21583404

Abstract

In the structure of the title compound, [CoCl2(C9H16N2Si)2], the CoII atom is located on an inversion center in a slightly distorted tetra­hedral environment formed by two chloride ions and the pyridine N atoms of two chelating 6-methyl-2-[(trimethyl­silyl)amino]pyridine ligands. The dihedral angle between the planes of the pyridine rings is 80.06 (5)°. Cohesion within the crystal structure is accomplished by N—H⋯Cl hydrogen bonds.

Related literature

For the chemistry of N-functionalized amino ligands, see: Liddle & Clegg (2001); Engelhardt et al. (1988); Kempe (2000) and references therein. Trimethyl­silyl-substituted methyl pyridine ligands have been developed due to their structural features and good catalytic activity, see: Andrews et al. (2004).graphic file with name e-65-0m957-scheme1.jpg

Experimental

Crystal data

  • [CoCl2(C9H16N2Si)2]

  • M r = 490.49

  • Monoclinic, Inline graphic

  • a = 14.817 (3) Å

  • b = 12.554 (4) Å

  • c = 14.886 (2) Å

  • β = 114.09 (2)°

  • V = 2527.8 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 213 K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.754, T max = 0.826

  • 5113 measured reflections

  • 2224 independent reflections

  • 1905 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.089

  • S = 1.02

  • 2224 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027937/fk2001sup1.cif

e-65-0m957-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027937/fk2001Isup2.hkl

e-65-0m957-Isup2.hkl (109.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1i 0.86 2.48 3.284 (2) 155

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Foundation for Returned Overseas Chinese Scholars of Shanxi Province.

supplementary crystallographic information

Comment

The stucture of the title compound, (I), is shown below. The molecule (Co atom) lies on a crystallographic inversion centre. Dimensions are available in the archived CIF. The chemistry of the N-functionalized amido ligands (Liddle and Clegg, 2001; Engelhardt et al., 1988; Kempe, 2000, and references therein) has attracted much interest, and a number of maingroup and transition metal amido complexes with unusual coordination geometry have been isolated. Trimethylsily substituted methyl pyridine ligands have been developed due to their structural features and good catalytic activities (Andrews et al., 2004). Here, we report the synthesis and structure of a new 6-methyl-2-(trimethylsilylamino) pyridine cobalt complex.

The molecular structure is illustrated in Fig. 1. In the complex, the Co atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two pyridine and two terminal Cl atoms. The bond lengths and angles are within normal ranges. Phenanthridine ring systems are, of course, planar and the dihedral angle between them is A/B = 80.06 (5)°. The compound displays intramolecular N—H···Cl hydrogen bonds (Table 2).

Experimental

6-Methyl-2-aminopyridine (0.25 g, 2.31 mmol) was added to a solution of LiBun (0.81 ml g, 2.31 mmol) in Et2O (30 ml) at 0°C. The resulting mixture was then warmed to room temperature and stirred for 3 h. SiMe3Cl (0.27 ml, 2.19 mmol) was added at 0°C. The resulting mixture was warmed to room temperature again and stirred for 3 h.CoCl2 (0.31 g, 2.39 mmol) was the added at -78°C and the mixture was warmed to room temperature and stirred for 24 h. The volatiles were removed in vacuo and the residue was extracted with dichloromethane then filtered. The filtrate was concentrated to give blue crystals (0.79 g, 67%). Anal. Calcd for C18H32Cl2CoN4Si2(%): C, 44.08; H, 6.58; N 11.42. Found: C, 42.85; H, 6.52; N, 10.99.

Refinement

H atoms of the methyl groups were derived from Fourier maps (HFIX 137) and allowed to ride during subsequent refinement with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). Other hydrogen atoms were refined at calculated positions riding on the C (C–H = 0.95–0.99 Å) or N (N–H = 0.86 Å) atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C/N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Crystal data

[CoCl2(C9H16N2Si)2] F(000) = 1028
Mr = 490.49 Dx = 1.289 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2926 reflections
a = 14.817 (3) Å θ = 2.2–260639°
b = 12.554 (4) Å µ = 1.00 mm1
c = 14.886 (2) Å T = 213 K
β = 114.09 (2)° Block, blue
V = 2527.8 (10) Å3 0.30 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2224 independent reflections
Radiation source: fine-focus sealed tube 1905 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −13→17
Tmin = 0.754, Tmax = 0.826 k = −14→13
5113 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: geom and difmap
wR(F2) = 0.089 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0559P)2] where P = (Fo2 + 2Fc2)/3
2224 reflections (Δ/σ)max = 0.001
127 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.0000 0.78913 (3) 0.2500 0.03732 (16)
Cl1 0.10398 (5) 0.89853 (5) 0.21598 (5) 0.0592 (2)
Si1 0.00558 (5) 0.75476 (5) 0.57526 (5) 0.04150 (19)
N1 0.09602 (12) 0.69403 (12) 0.36153 (13) 0.0331 (4)
N2 0.04259 (13) 0.76380 (14) 0.47782 (13) 0.0407 (5)
H2A 0.0166 0.8153 0.4373 0.049*
C1 0.10695 (15) 0.70085 (15) 0.45668 (16) 0.0352 (5)
C2 0.18218 (15) 0.64481 (17) 0.53209 (16) 0.0396 (5)
H2B 0.1894 0.6512 0.5969 0.048*
C3 0.24442 (16) 0.58107 (17) 0.50937 (17) 0.0437 (6)
H3A 0.2952 0.5446 0.5588 0.052*
C4 0.23132 (16) 0.57104 (17) 0.41187 (17) 0.0422 (5)
H4A 0.2723 0.5262 0.3955 0.051*
C5 0.15804 (15) 0.62725 (17) 0.34001 (16) 0.0372 (5)
C6 0.14102 (18) 0.6165 (2) 0.23377 (17) 0.0514 (6)
H6A 0.1861 0.5649 0.2278 0.077*
H6B 0.1518 0.6841 0.2096 0.077*
H6C 0.0743 0.5936 0.1960 0.077*
C7 0.1062 (2) 0.7875 (2) 0.69626 (19) 0.0632 (7)
H7A 0.1575 0.7349 0.7127 0.095*
H7B 0.0804 0.7883 0.7458 0.095*
H7C 0.1329 0.8564 0.6929 0.095*
C8 −0.0395 (2) 0.6186 (2) 0.5781 (2) 0.0780 (9)
H8A −0.0910 0.6017 0.5152 0.117*
H8B −0.0651 0.6141 0.6278 0.117*
H8C 0.0140 0.5690 0.5930 0.117*
C9 −0.0937 (2) 0.8548 (3) 0.5436 (2) 0.0819 (10)
H9A −0.0685 0.9234 0.5370 0.123*
H9B −0.1174 0.8574 0.5947 0.123*
H9C −0.1470 0.8356 0.4826 0.123*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0405 (3) 0.0364 (3) 0.0298 (3) 0.000 0.00890 (19) 0.000
Cl1 0.0730 (5) 0.0549 (4) 0.0429 (4) −0.0265 (3) 0.0167 (3) −0.0029 (3)
Si1 0.0433 (4) 0.0439 (4) 0.0383 (4) 0.0058 (3) 0.0177 (3) 0.0030 (3)
N1 0.0311 (9) 0.0327 (9) 0.0327 (10) −0.0001 (7) 0.0102 (8) −0.0018 (7)
N2 0.0481 (11) 0.0398 (10) 0.0331 (11) 0.0132 (8) 0.0156 (9) 0.0061 (8)
C1 0.0363 (12) 0.0312 (11) 0.0356 (12) −0.0039 (9) 0.0123 (10) −0.0017 (9)
C2 0.0403 (12) 0.0419 (12) 0.0334 (12) 0.0002 (10) 0.0117 (10) 0.0041 (10)
C3 0.0363 (12) 0.0412 (12) 0.0473 (15) 0.0044 (10) 0.0107 (11) 0.0063 (11)
C4 0.0353 (12) 0.0425 (12) 0.0484 (14) 0.0032 (10) 0.0168 (11) −0.0012 (11)
C5 0.0330 (11) 0.0380 (11) 0.0398 (13) −0.0046 (9) 0.0142 (10) −0.0061 (10)
C6 0.0444 (13) 0.0660 (16) 0.0431 (14) 0.0052 (12) 0.0170 (11) −0.0104 (12)
C7 0.0665 (18) 0.0831 (19) 0.0421 (16) −0.0077 (15) 0.0243 (14) −0.0082 (14)
C8 0.091 (2) 0.0630 (18) 0.094 (3) −0.0211 (17) 0.0524 (19) −0.0041 (17)
C9 0.088 (2) 0.102 (2) 0.071 (2) 0.049 (2) 0.0480 (18) 0.0261 (19)

Geometric parameters (Å, °)

Co1—N1i 2.0681 (17) C3—H3A 0.9300
Co1—N1 2.0681 (17) C4—C5 1.369 (3)
Co1—Cl1 2.2701 (7) C4—H4A 0.9300
Co1—Cl1i 2.2701 (7) C5—C6 1.503 (3)
Si1—N2 1.7512 (19) C6—H6A 0.9600
Si1—C9 1.843 (3) C6—H6B 0.9600
Si1—C8 1.843 (3) C6—H6C 0.9600
Si1—C7 1.856 (3) C7—H7A 0.9600
N1—C1 1.361 (3) C7—H7B 0.9600
N1—C5 1.375 (3) C7—H7C 0.9600
N2—C1 1.370 (3) C8—H8A 0.9600
N2—H2A 0.8600 C8—H8B 0.9600
C1—C2 1.406 (3) C8—H8C 0.9600
C2—C3 1.364 (3) C9—H9A 0.9600
C2—H2B 0.9300 C9—H9B 0.9600
C3—C4 1.389 (3) C9—H9C 0.9600
N1i—Co1—N1 109.49 (9) C3—C4—H4A 120.1
N1i—Co1—Cl1 118.51 (5) C4—C5—N1 121.7 (2)
N1—Co1—Cl1 102.78 (5) C4—C5—C6 121.01 (19)
N1i—Co1—Cl1i 102.78 (5) N1—C5—C6 117.33 (19)
N1—Co1—Cl1i 118.51 (5) C5—C6—H6A 109.5
Cl1—Co1—Cl1i 105.54 (4) C5—C6—H6B 109.5
N2—Si1—C9 103.38 (11) H6A—C6—H6B 109.5
N2—Si1—C8 108.58 (12) C5—C6—H6C 109.5
C9—Si1—C8 112.25 (15) H6A—C6—H6C 109.5
N2—Si1—C7 112.97 (11) H6B—C6—H6C 109.5
C9—Si1—C7 109.78 (14) Si1—C7—H7A 109.5
C8—Si1—C7 109.78 (14) Si1—C7—H7B 109.5
C1—N1—C5 118.28 (17) H7A—C7—H7B 109.5
C1—N1—Co1 123.35 (13) Si1—C7—H7C 109.5
C5—N1—Co1 118.11 (14) H7A—C7—H7C 109.5
C1—N2—Si1 129.45 (15) H7B—C7—H7C 109.5
C1—N2—H2A 115.3 Si1—C8—H8A 109.5
Si1—N2—H2A 115.3 Si1—C8—H8B 109.5
N1—C1—N2 118.49 (19) H8A—C8—H8B 109.5
N1—C1—C2 121.22 (19) Si1—C8—H8C 109.5
N2—C1—C2 120.3 (2) H8A—C8—H8C 109.5
C3—C2—C1 119.5 (2) H8B—C8—H8C 109.5
C3—C2—H2B 120.3 Si1—C9—H9A 109.5
C1—C2—H2B 120.3 Si1—C9—H9B 109.5
C2—C3—C4 119.5 (2) H9A—C9—H9B 109.5
C2—C3—H3A 120.3 Si1—C9—H9C 109.5
C4—C3—H3A 120.3 H9A—C9—H9C 109.5
C5—C4—C3 119.9 (2) H9B—C9—H9C 109.5
C5—C4—H4A 120.1
N1i—Co1—N1—C1 −123.88 (16) Si1—N2—C1—N1 154.07 (16)
Cl1—Co1—N1—C1 109.30 (15) Si1—N2—C1—C2 −25.8 (3)
Cl1i—Co1—N1—C1 −6.54 (17) N1—C1—C2—C3 −1.1 (3)
N1i—Co1—N1—C5 62.03 (13) N2—C1—C2—C3 178.84 (19)
Cl1—Co1—N1—C5 −64.80 (14) C1—C2—C3—C4 −1.2 (3)
Cl1i—Co1—N1—C5 179.37 (12) C2—C3—C4—C5 1.8 (3)
C9—Si1—N2—C1 −172.5 (2) C3—C4—C5—N1 −0.1 (3)
C8—Si1—N2—C1 −53.1 (2) C3—C4—C5—C6 −178.9 (2)
C7—Si1—N2—C1 68.9 (2) C1—N1—C5—C4 −2.0 (3)
C5—N1—C1—N2 −177.26 (17) Co1—N1—C5—C4 172.35 (15)
Co1—N1—C1—N2 8.7 (2) C1—N1—C5—C6 176.76 (19)
C5—N1—C1—C2 2.6 (3) Co1—N1—C5—C6 −8.8 (2)
Co1—N1—C1—C2 −171.44 (14)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···Cl1i 0.86 2.48 3.284 (2) 155

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2001).

References

  1. Andrews, J. E., McGrady, P. J. & Nichols, P. T. (2004). Organometallics, 23, 446–453.
  2. Bruker (1996). SMART and SAINT Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  3. Engelhardt, L. M., Jacobsen, G. E., Junk, P. C., Raston, C. L., Skelton, B. W. & White, A. H. (1988). J. Chem. Soc. Dalton Trans. pp. 1011–1020.
  4. Kempe, R. (2000). Angew. Chem. Int. Ed.39, 468–493. [DOI] [PubMed]
  5. Liddle, S. T. & Clegg, W. (2001). J. Chem. Soc., Dalton Trans. pp. 402–408.
  6. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027937/fk2001sup1.cif

e-65-0m957-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027937/fk2001Isup2.hkl

e-65-0m957-Isup2.hkl (109.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES