Abstract
In the structure of the title compound, [CoCl2(C9H16N2Si)2], the CoII atom is located on an inversion center in a slightly distorted tetrahedral environment formed by two chloride ions and the pyridine N atoms of two chelating 6-methyl-2-[(trimethylsilyl)amino]pyridine ligands. The dihedral angle between the planes of the pyridine rings is 80.06 (5)°. Cohesion within the crystal structure is accomplished by N—H⋯Cl hydrogen bonds.
Related literature
For the chemistry of N-functionalized amino ligands, see: Liddle & Clegg (2001 ▶); Engelhardt et al. (1988 ▶); Kempe (2000 ▶) and references therein. Trimethylsilyl-substituted methyl pyridine ligands have been developed due to their structural features and good catalytic activity, see: Andrews et al. (2004 ▶).
Experimental
Crystal data
[CoCl2(C9H16N2Si)2]
M r = 490.49
Monoclinic,
a = 14.817 (3) Å
b = 12.554 (4) Å
c = 14.886 (2) Å
β = 114.09 (2)°
V = 2527.8 (10) Å3
Z = 4
Mo Kα radiation
μ = 1.00 mm−1
T = 213 K
0.30 × 0.30 × 0.20 mm
Data collection
Bruker SMART APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004 ▶) T min = 0.754, T max = 0.826
5113 measured reflections
2224 independent reflections
1905 reflections with I > 2σ(I)
R int = 0.020
Refinement
R[F 2 > 2σ(F 2)] = 0.033
wR(F 2) = 0.089
S = 1.02
2224 reflections
127 parameters
H-atom parameters constrained
Δρmax = 0.47 e Å−3
Δρmin = −0.20 e Å−3
Data collection: SMART (Bruker, 1996 ▶); cell refinement: SAINT (Bruker, 1996 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXTL (Sheldrick, 2008 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027937/fk2001sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027937/fk2001Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H2A⋯Cl1i | 0.86 | 2.48 | 3.284 (2) | 155 |
Symmetry code: (i)
.
Acknowledgments
The authors thank the Foundation for Returned Overseas Chinese Scholars of Shanxi Province.
supplementary crystallographic information
Comment
The stucture of the title compound, (I), is shown below. The molecule (Co atom) lies on a crystallographic inversion centre. Dimensions are available in the archived CIF. The chemistry of the N-functionalized amido ligands (Liddle and Clegg, 2001; Engelhardt et al., 1988; Kempe, 2000, and references therein) has attracted much interest, and a number of maingroup and transition metal amido complexes with unusual coordination geometry have been isolated. Trimethylsily substituted methyl pyridine ligands have been developed due to their structural features and good catalytic activities (Andrews et al., 2004). Here, we report the synthesis and structure of a new 6-methyl-2-(trimethylsilylamino) pyridine cobalt complex.
The molecular structure is illustrated in Fig. 1. In the complex, the Co atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two pyridine and two terminal Cl atoms. The bond lengths and angles are within normal ranges. Phenanthridine ring systems are, of course, planar and the dihedral angle between them is A/B = 80.06 (5)°. The compound displays intramolecular N—H···Cl hydrogen bonds (Table 2).
Experimental
6-Methyl-2-aminopyridine (0.25 g, 2.31 mmol) was added to a solution of LiBun (0.81 ml g, 2.31 mmol) in Et2O (30 ml) at 0°C. The resulting mixture was then warmed to room temperature and stirred for 3 h. SiMe3Cl (0.27 ml, 2.19 mmol) was added at 0°C. The resulting mixture was warmed to room temperature again and stirred for 3 h.CoCl2 (0.31 g, 2.39 mmol) was the added at -78°C and the mixture was warmed to room temperature and stirred for 24 h. The volatiles were removed in vacuo and the residue was extracted with dichloromethane then filtered. The filtrate was concentrated to give blue crystals (0.79 g, 67%). Anal. Calcd for C18H32Cl2CoN4Si2(%): C, 44.08; H, 6.58; N 11.42. Found: C, 42.85; H, 6.52; N, 10.99.
Refinement
H atoms of the methyl groups were derived from Fourier maps (HFIX 137) and allowed to ride during subsequent refinement with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). Other hydrogen atoms were refined at calculated positions riding on the C (C–H = 0.95–0.99 Å) or N (N–H = 0.86 Å) atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C/N).
Figures
Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
Crystal data
| [CoCl2(C9H16N2Si)2] | F(000) = 1028 |
| Mr = 490.49 | Dx = 1.289 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -C 2yc | Cell parameters from 2926 reflections |
| a = 14.817 (3) Å | θ = 2.2–260639° |
| b = 12.554 (4) Å | µ = 1.00 mm−1 |
| c = 14.886 (2) Å | T = 213 K |
| β = 114.09 (2)° | Block, blue |
| V = 2527.8 (10) Å3 | 0.30 × 0.30 × 0.20 mm |
| Z = 4 |
Data collection
| Bruker SMART APEX CCD area-detector diffractometer | 2224 independent reflections |
| Radiation source: fine-focus sealed tube | 1905 reflections with I > 2σ(I) |
| graphite | Rint = 0.020 |
| φ and ω scans | θmax = 25.0°, θmin = 2.2° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −13→17 |
| Tmin = 0.754, Tmax = 0.826 | k = −14→13 |
| 5113 measured reflections | l = −17→17 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: geom and difmap |
| wR(F2) = 0.089 | H-atom parameters constrained |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0559P)2] where P = (Fo2 + 2Fc2)/3 |
| 2224 reflections | (Δ/σ)max = 0.001 |
| 127 parameters | Δρmax = 0.47 e Å−3 |
| 0 restraints | Δρmin = −0.19 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Co1 | 0.0000 | 0.78913 (3) | 0.2500 | 0.03732 (16) | |
| Cl1 | 0.10398 (5) | 0.89853 (5) | 0.21598 (5) | 0.0592 (2) | |
| Si1 | 0.00558 (5) | 0.75476 (5) | 0.57526 (5) | 0.04150 (19) | |
| N1 | 0.09602 (12) | 0.69403 (12) | 0.36153 (13) | 0.0331 (4) | |
| N2 | 0.04259 (13) | 0.76380 (14) | 0.47782 (13) | 0.0407 (5) | |
| H2A | 0.0166 | 0.8153 | 0.4373 | 0.049* | |
| C1 | 0.10695 (15) | 0.70085 (15) | 0.45668 (16) | 0.0352 (5) | |
| C2 | 0.18218 (15) | 0.64481 (17) | 0.53209 (16) | 0.0396 (5) | |
| H2B | 0.1894 | 0.6512 | 0.5969 | 0.048* | |
| C3 | 0.24442 (16) | 0.58107 (17) | 0.50937 (17) | 0.0437 (6) | |
| H3A | 0.2952 | 0.5446 | 0.5588 | 0.052* | |
| C4 | 0.23132 (16) | 0.57104 (17) | 0.41187 (17) | 0.0422 (5) | |
| H4A | 0.2723 | 0.5262 | 0.3955 | 0.051* | |
| C5 | 0.15804 (15) | 0.62725 (17) | 0.34001 (16) | 0.0372 (5) | |
| C6 | 0.14102 (18) | 0.6165 (2) | 0.23377 (17) | 0.0514 (6) | |
| H6A | 0.1861 | 0.5649 | 0.2278 | 0.077* | |
| H6B | 0.1518 | 0.6841 | 0.2096 | 0.077* | |
| H6C | 0.0743 | 0.5936 | 0.1960 | 0.077* | |
| C7 | 0.1062 (2) | 0.7875 (2) | 0.69626 (19) | 0.0632 (7) | |
| H7A | 0.1575 | 0.7349 | 0.7127 | 0.095* | |
| H7B | 0.0804 | 0.7883 | 0.7458 | 0.095* | |
| H7C | 0.1329 | 0.8564 | 0.6929 | 0.095* | |
| C8 | −0.0395 (2) | 0.6186 (2) | 0.5781 (2) | 0.0780 (9) | |
| H8A | −0.0910 | 0.6017 | 0.5152 | 0.117* | |
| H8B | −0.0651 | 0.6141 | 0.6278 | 0.117* | |
| H8C | 0.0140 | 0.5690 | 0.5930 | 0.117* | |
| C9 | −0.0937 (2) | 0.8548 (3) | 0.5436 (2) | 0.0819 (10) | |
| H9A | −0.0685 | 0.9234 | 0.5370 | 0.123* | |
| H9B | −0.1174 | 0.8574 | 0.5947 | 0.123* | |
| H9C | −0.1470 | 0.8356 | 0.4826 | 0.123* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Co1 | 0.0405 (3) | 0.0364 (3) | 0.0298 (3) | 0.000 | 0.00890 (19) | 0.000 |
| Cl1 | 0.0730 (5) | 0.0549 (4) | 0.0429 (4) | −0.0265 (3) | 0.0167 (3) | −0.0029 (3) |
| Si1 | 0.0433 (4) | 0.0439 (4) | 0.0383 (4) | 0.0058 (3) | 0.0177 (3) | 0.0030 (3) |
| N1 | 0.0311 (9) | 0.0327 (9) | 0.0327 (10) | −0.0001 (7) | 0.0102 (8) | −0.0018 (7) |
| N2 | 0.0481 (11) | 0.0398 (10) | 0.0331 (11) | 0.0132 (8) | 0.0156 (9) | 0.0061 (8) |
| C1 | 0.0363 (12) | 0.0312 (11) | 0.0356 (12) | −0.0039 (9) | 0.0123 (10) | −0.0017 (9) |
| C2 | 0.0403 (12) | 0.0419 (12) | 0.0334 (12) | 0.0002 (10) | 0.0117 (10) | 0.0041 (10) |
| C3 | 0.0363 (12) | 0.0412 (12) | 0.0473 (15) | 0.0044 (10) | 0.0107 (11) | 0.0063 (11) |
| C4 | 0.0353 (12) | 0.0425 (12) | 0.0484 (14) | 0.0032 (10) | 0.0168 (11) | −0.0012 (11) |
| C5 | 0.0330 (11) | 0.0380 (11) | 0.0398 (13) | −0.0046 (9) | 0.0142 (10) | −0.0061 (10) |
| C6 | 0.0444 (13) | 0.0660 (16) | 0.0431 (14) | 0.0052 (12) | 0.0170 (11) | −0.0104 (12) |
| C7 | 0.0665 (18) | 0.0831 (19) | 0.0421 (16) | −0.0077 (15) | 0.0243 (14) | −0.0082 (14) |
| C8 | 0.091 (2) | 0.0630 (18) | 0.094 (3) | −0.0211 (17) | 0.0524 (19) | −0.0041 (17) |
| C9 | 0.088 (2) | 0.102 (2) | 0.071 (2) | 0.049 (2) | 0.0480 (18) | 0.0261 (19) |
Geometric parameters (Å, °)
| Co1—N1i | 2.0681 (17) | C3—H3A | 0.9300 |
| Co1—N1 | 2.0681 (17) | C4—C5 | 1.369 (3) |
| Co1—Cl1 | 2.2701 (7) | C4—H4A | 0.9300 |
| Co1—Cl1i | 2.2701 (7) | C5—C6 | 1.503 (3) |
| Si1—N2 | 1.7512 (19) | C6—H6A | 0.9600 |
| Si1—C9 | 1.843 (3) | C6—H6B | 0.9600 |
| Si1—C8 | 1.843 (3) | C6—H6C | 0.9600 |
| Si1—C7 | 1.856 (3) | C7—H7A | 0.9600 |
| N1—C1 | 1.361 (3) | C7—H7B | 0.9600 |
| N1—C5 | 1.375 (3) | C7—H7C | 0.9600 |
| N2—C1 | 1.370 (3) | C8—H8A | 0.9600 |
| N2—H2A | 0.8600 | C8—H8B | 0.9600 |
| C1—C2 | 1.406 (3) | C8—H8C | 0.9600 |
| C2—C3 | 1.364 (3) | C9—H9A | 0.9600 |
| C2—H2B | 0.9300 | C9—H9B | 0.9600 |
| C3—C4 | 1.389 (3) | C9—H9C | 0.9600 |
| N1i—Co1—N1 | 109.49 (9) | C3—C4—H4A | 120.1 |
| N1i—Co1—Cl1 | 118.51 (5) | C4—C5—N1 | 121.7 (2) |
| N1—Co1—Cl1 | 102.78 (5) | C4—C5—C6 | 121.01 (19) |
| N1i—Co1—Cl1i | 102.78 (5) | N1—C5—C6 | 117.33 (19) |
| N1—Co1—Cl1i | 118.51 (5) | C5—C6—H6A | 109.5 |
| Cl1—Co1—Cl1i | 105.54 (4) | C5—C6—H6B | 109.5 |
| N2—Si1—C9 | 103.38 (11) | H6A—C6—H6B | 109.5 |
| N2—Si1—C8 | 108.58 (12) | C5—C6—H6C | 109.5 |
| C9—Si1—C8 | 112.25 (15) | H6A—C6—H6C | 109.5 |
| N2—Si1—C7 | 112.97 (11) | H6B—C6—H6C | 109.5 |
| C9—Si1—C7 | 109.78 (14) | Si1—C7—H7A | 109.5 |
| C8—Si1—C7 | 109.78 (14) | Si1—C7—H7B | 109.5 |
| C1—N1—C5 | 118.28 (17) | H7A—C7—H7B | 109.5 |
| C1—N1—Co1 | 123.35 (13) | Si1—C7—H7C | 109.5 |
| C5—N1—Co1 | 118.11 (14) | H7A—C7—H7C | 109.5 |
| C1—N2—Si1 | 129.45 (15) | H7B—C7—H7C | 109.5 |
| C1—N2—H2A | 115.3 | Si1—C8—H8A | 109.5 |
| Si1—N2—H2A | 115.3 | Si1—C8—H8B | 109.5 |
| N1—C1—N2 | 118.49 (19) | H8A—C8—H8B | 109.5 |
| N1—C1—C2 | 121.22 (19) | Si1—C8—H8C | 109.5 |
| N2—C1—C2 | 120.3 (2) | H8A—C8—H8C | 109.5 |
| C3—C2—C1 | 119.5 (2) | H8B—C8—H8C | 109.5 |
| C3—C2—H2B | 120.3 | Si1—C9—H9A | 109.5 |
| C1—C2—H2B | 120.3 | Si1—C9—H9B | 109.5 |
| C2—C3—C4 | 119.5 (2) | H9A—C9—H9B | 109.5 |
| C2—C3—H3A | 120.3 | Si1—C9—H9C | 109.5 |
| C4—C3—H3A | 120.3 | H9A—C9—H9C | 109.5 |
| C5—C4—C3 | 119.9 (2) | H9B—C9—H9C | 109.5 |
| C5—C4—H4A | 120.1 | ||
| N1i—Co1—N1—C1 | −123.88 (16) | Si1—N2—C1—N1 | 154.07 (16) |
| Cl1—Co1—N1—C1 | 109.30 (15) | Si1—N2—C1—C2 | −25.8 (3) |
| Cl1i—Co1—N1—C1 | −6.54 (17) | N1—C1—C2—C3 | −1.1 (3) |
| N1i—Co1—N1—C5 | 62.03 (13) | N2—C1—C2—C3 | 178.84 (19) |
| Cl1—Co1—N1—C5 | −64.80 (14) | C1—C2—C3—C4 | −1.2 (3) |
| Cl1i—Co1—N1—C5 | 179.37 (12) | C2—C3—C4—C5 | 1.8 (3) |
| C9—Si1—N2—C1 | −172.5 (2) | C3—C4—C5—N1 | −0.1 (3) |
| C8—Si1—N2—C1 | −53.1 (2) | C3—C4—C5—C6 | −178.9 (2) |
| C7—Si1—N2—C1 | 68.9 (2) | C1—N1—C5—C4 | −2.0 (3) |
| C5—N1—C1—N2 | −177.26 (17) | Co1—N1—C5—C4 | 172.35 (15) |
| Co1—N1—C1—N2 | 8.7 (2) | C1—N1—C5—C6 | 176.76 (19) |
| C5—N1—C1—C2 | 2.6 (3) | Co1—N1—C5—C6 | −8.8 (2) |
| Co1—N1—C1—C2 | −171.44 (14) |
Symmetry codes: (i) −x, y, −z+1/2.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2A···Cl1i | 0.86 | 2.48 | 3.284 (2) | 155 |
Symmetry codes: (i) −x, y, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2001).
References
- Andrews, J. E., McGrady, P. J. & Nichols, P. T. (2004). Organometallics, 23, 446–453.
- Bruker (1996). SMART and SAINT Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Engelhardt, L. M., Jacobsen, G. E., Junk, P. C., Raston, C. L., Skelton, B. W. & White, A. H. (1988). J. Chem. Soc. Dalton Trans. pp. 1011–1020.
- Kempe, R. (2000). Angew. Chem. Int. Ed.39, 468–493. [DOI] [PubMed]
- Liddle, S. T. & Clegg, W. (2001). J. Chem. Soc., Dalton Trans. pp. 402–408.
- Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027937/fk2001sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027937/fk2001Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

