Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Aug;86(15):5864–5867. doi: 10.1073/pnas.86.15.5864

Tetrahydrobiopterin, the cofactor for aromatic amino acid hydroxylases, is synthesized by and regulates proliferation of erythroid cells.

K Tanaka 1, S Kaufman 1, S Milstien 1
PMCID: PMC297731  PMID: 2762302

Abstract

The only known role for 6(R)-5,6,7,8-tetrahydrobiopterin (BH4) is as the cofactor for the aromatic amino acid hydroxylases. However, BH4 has been shown to be synthesized by cells that do not contain any hydroxylase activity, suggesting that it may have still undiscovered functions. Our finding of much higher levels of BH4 and GTP cyclohydrolase, the first enzyme of de novo BH4 biosynthesis, in rat reticulocytes compared to mature erythrocytes raised the possibility that BH4 might play a role in erythrocyte maturation. We have now demonstrated, by using murine erythroleukemia (MEL) cells as a model for erythrogenesis, that BH4 synthesis is required for proliferation of these cells. Inhibition of BH4 biosynthesis in rapidly dividing MEL cells with N-acetylserotonin, a potent inhibitor of sepiapterin reductase, the terminal enzyme in the BH4 biosynthetic pathway, results in inhibition of DNA synthesis and mitogenesis without induction of hemoglobin synthesis. The inhibition of DNA synthesis is reversed by repletion of cellular BH4 levels with sepiapterin, a pterin that is readily taken up by the cells and converted to BH4 by the sequential reductions of sepiapterin reductase and dihydrofolate reductase. Treatment of MEL cells with hexamethylene bisacetamide, an inducer of differentiation, results in a decrease in BH4 synthesis accompanied by a cessation of growth and concomitant hemoglobin synthesis. The inhibition of proliferation induced by hexamethylene bisacetamide can be reversed by maintaining high intracellular levels of BH4, which also decreases the amount of hemoglobin. The mechanism of the BH4 effect has not yet been elucidated, but it appears as though BH4 synthesis is more intimately linked with cell proliferation than with the differentiation process.

Full text

PDF
5864

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blau N., Niederwieser A. Guanosine triphosphate cyclohydrolase I assay in human and rat liver using high-performance liquid chromatography of neopterin phosphates and guanine nucleotides. Anal Biochem. 1983 Feb 1;128(2):446–452. doi: 10.1016/0003-2697(83)90399-8. [DOI] [PubMed] [Google Scholar]
  2. Chen Z., Banks J., Rifkind R. A., Marks P. A. Inducer-mediated commitment of murine erythroleukemia cells to differentiation: a multistep process. Proc Natl Acad Sci U S A. 1982 Jan;79(2):471–475. doi: 10.1073/pnas.79.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Craine J. E., Hall E. S., Kaufman S. The isolation and characterization of dihydropteridine reductase from sheep liver. J Biol Chem. 1972 Oct 10;247(19):6082–6091. [PubMed] [Google Scholar]
  4. Friend C., Scher W., Holland J. G., Sato T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1971 Feb;68(2):378–382. doi: 10.1073/pnas.68.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fukushima T., Nixon J. C. Analysis of reduced forms of biopterin in biological tissues and fluids. Anal Biochem. 1980 Feb;102(1):176–188. doi: 10.1016/0003-2697(80)90336-x. [DOI] [PubMed] [Google Scholar]
  6. Green J. M., Ballou D. P., Matthews R. G. Examination of the role of methylenetetrahydrofolate reductase in incorporation of methyltetrahydrofolate into cellular metabolism. FASEB J. 1988 Jan;2(1):42–47. doi: 10.1096/fasebj.2.1.3335280. [DOI] [PubMed] [Google Scholar]
  7. Jackson R. C. Modulation of methotrexate toxicity by thymidine: sequence-dependent biochemical effects. Mol Pharmacol. 1980 Sep;18(2):281–286. [PubMed] [Google Scholar]
  8. Katoh S., Sueoka T., Yamada S. Direct inhibition of brain sepiapterin reductase by a catecholamine and an indoleamine. Biochem Biophys Res Commun. 1982 Mar 15;105(1):75–81. doi: 10.1016/s0006-291x(82)80012-0. [DOI] [PubMed] [Google Scholar]
  9. Limbird L. E., Gill D. M., Stadel J. M., Hickey A. R., Lefkowitz R. J. Loss of beta-adrenergic receptor-guanine nucleotide regulatory protein interactions accompanies decline in catecholamine responsiveness of adenylate cyclase in maturing rat erythrocytes. J Biol Chem. 1980 Mar 10;255(5):1854–1861. [PubMed] [Google Scholar]
  10. Marks P. A., Rifkind R. A. Erythroleukemic differentiation. Annu Rev Biochem. 1978;47:419–448. doi: 10.1146/annurev.bi.47.070178.002223. [DOI] [PubMed] [Google Scholar]
  11. Marks P. A., Sheffery M., Rifkind R. A. Induction of transformed cells to terminal differentiation and the modulation of gene expression. Cancer Res. 1987 Feb 1;47(3):659–666. [PubMed] [Google Scholar]
  12. Matthews R. G., Kaufman S. Characterization of the dihydropterin reductase activity of pig liver methylenetetrahydrofolate reductase. J Biol Chem. 1980 Jul 10;255(13):6014–6017. [PubMed] [Google Scholar]
  13. Melloni E., Pontremoli S., Michetti M., Sacco O., Cakiroglu A. G., Jackson J. F., Rifkind R. A., Marks P. A. Protein kinase C activity and hexamethylenebisacetamide-induced erythroleukemia cell differentiation. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5282–5286. doi: 10.1073/pnas.84.15.5282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Milstien S., Kaufman S. Biosynthesis of tetrahydrobiopterin: conversion of dihydroneopterin triphosphate to tetrahydropterin intermediates. Biochem Biophys Res Commun. 1985 May 16;128(3):1099–1107. doi: 10.1016/0006-291x(85)91053-8. [DOI] [PubMed] [Google Scholar]
  15. Milstien S., Kaufman S., Summer G. K. Hyperphenylalaninemia due to dihydropteridine reductase deficiency: diagnosis by measurement of oxidized and reduced pterins in urine. Pediatrics. 1980 Apr;65(4):806–810. [PubMed] [Google Scholar]
  16. Nichol C. A., Lee C. L., Edelstein M. P., Chao J. Y., Duch D. S. Biosynthesis of tetrahydrobiopterin by de novo and salvage pathways in adrenal medulla extracts, mammalian cell cultures, and rat brain in vivo. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1546–1550. doi: 10.1073/pnas.80.6.1546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Niederwieser A., Shintaku H., Hasler T., Curtius H. C., Lehmann H., Guardamagna O., Schmidt H. Prenatal diagnosis of "dihydrobiopterin synthetase" deficiency, a variant form of phenylketonuria. Eur J Pediatr. 1986 Aug;145(3):176–178. doi: 10.1007/BF00446058. [DOI] [PubMed] [Google Scholar]
  18. Orkin S. H., Harosi F. I., Leder P. Differentiation in erythroleukemic cells and their somatic hybrids. Proc Natl Acad Sci U S A. 1975 Jan;72(1):98–102. doi: 10.1073/pnas.72.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reuben R. C., Wife R. L., Breslow R., Rifkind R. A., Marks P. A. A new group of potent inducers of differentiation in murine erythroleukemia cells. Proc Natl Acad Sci U S A. 1976 Mar;73(3):862–866. doi: 10.1073/pnas.73.3.862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rutherford T. R., Weatherall D. J. Deficient heme synthesis as the cause of noninducibility of hemoglobin synthesis in a Friend erythroleukemia cell line. Cell. 1979 Feb;16(2):415–423. doi: 10.1016/0092-8674(79)90017-5. [DOI] [PubMed] [Google Scholar]
  21. Schoedon G., Curtis H. C., Niederwieser A. Localization of GTP cyclohydrolase I in human peripheral blood smears using a specific monoclonal antibody and an immune-alkaline phosphatase labeling technique. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1232–1236. doi: 10.1016/s0006-291x(87)80264-4. [DOI] [PubMed] [Google Scholar]
  22. Speiser S., Etlinger J. D. Loss of ATP-dependent proteolysis with maturation of reticulocytes and erythrocytes. J Biol Chem. 1982 Dec 10;257(23):14122–14127. [PubMed] [Google Scholar]
  23. Sueoka T., Katoh S. Purification and characterization of sepiapterin reductase from rat erythrocytes. Biochim Biophys Acta. 1982 Aug 6;717(2):265–271. doi: 10.1016/0304-4165(82)90178-7. [DOI] [PubMed] [Google Scholar]
  24. Tsiftsoglou A. S., Sartorelli A. C. Relationship between cellular replication and erythroid differentiation of murine leukemia cells. Biochim Biophys Acta. 1981 Apr 27;653(2):226–235. doi: 10.1016/0005-2787(81)90158-1. [DOI] [PubMed] [Google Scholar]
  25. Ziegler I., Fink M., Wilmanns W. Biopterin level in peripheral blood cells as a marker for hemopoietic cell proliferation during leukemia and polycythemia vera. Blut. 1982 Apr;44(4):231–240. doi: 10.1007/BF00319909. [DOI] [PubMed] [Google Scholar]
  26. Ziegler I., Kolb H. J., Bodenberger U., Wilmanns W. Biopterin level in blood cells as a marker for hemopoietic cell proliferation during autologous bone marrow transplantation in beagle dogs. Blut. 1982 May;44(5):261–270. doi: 10.1007/BF00320700. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES