Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 18;65(Pt 8):m938–m939. doi: 10.1107/S1600536809027457

trans-Diaqua­bis[5-carb­oxy-2-(3-pyrid­yl)-1H-imidazole-4-carboxyl­ato-κ2 N 3,O 4]iron(II)

Wei Liu a, Gang Zhang a, Xia Li a,*, Ben-Lai Wu b,*, Hong-Yun Zhang b
PMCID: PMC2977312  PMID: 21583390

Abstract

In the title complex, [Fe(C10H6N3O4)2(H2O)2], the FeII atom is located on an inversion centre and is trans-coordinated by two N,O-bidentate 5-carb­oxy-2-(3-pyrid­yl)-1H-imidazole-4-carb­oxy­l­ate ligands and two water mol­ecules, defining a distorted octa­hedral environment. A two-dimensional network of N—H⋯O and O—H⋯O hydrogen bonds extending parallel to (110) helps to stabilize the crystal packing.

Related literature

N-Heterocyclic carboxylic acids are efficient N/O donors exhibiting versatile coordination modes and hydrogen bonding and can be successively deprotonated, resulting in a large diversity of supra­molecular architectures, see: Gu et al. (2007); Liu et al. (2004); Maji et al. (2005); Rajendiran et al. (2003); Sun et al. (2005); Zou et al. (2005).graphic file with name e-65-0m938-scheme1.jpg

Experimental

Crystal data

  • [Fe(C10H6N3O4)2(H2O)2]

  • M r = 556.24

  • Triclinic, Inline graphic

  • a = 7.0100 (14) Å

  • b = 8.6670 (17) Å

  • c = 9.4110 (19) Å

  • α = 82.28 (3)°

  • β = 83.84 (3)°

  • γ = 70.66 (3)°

  • V = 533.41 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 173 K

  • 0.29 × 0.24 × 0.19 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) T min = 0.826, T max = 0.890

  • 4126 measured reflections

  • 2084 independent reflections

  • 1693 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.105

  • S = 1.04

  • 2084 reflections

  • 172 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027457/bv2118sup1.cif

e-65-0m938-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027457/bv2118Isup2.hkl

e-65-0m938-Isup2.hkl (102.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.83 2.09 2.852 (3) 152
O5—H5A⋯O3ii 0.89 2.03 2.899 (3) 165
O5—H5B⋯N3iii 0.84 2.01 2.780 (3) 152
O3—H3A⋯O2 0.868 (10) 1.613 (11) 2.479 (3) 176 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20771094, 20671083), the Science and Technology Key Task of Henan Province (0524270061) and the China Postdoctoral Science Foundation (20070410877).

supplementary crystallographic information

Comment

N-Heterocyclic carboxylic acids, such as imidazole-4,5-dicarboxylic acid (H3IDC), are recognized as efficient N/O donors exhibiting versatile coordination modes and hydrogen bonding. It can be successively deprotonated to generate various species with different proton numbers (H2IDC-, HIDC2-, and IDC3-), and hence may result in a large diversity of supramolecular architectures (Sun et al., 2005; Maji et al., 2005; Liu et al., 2004; Zou et al., 2005; Rajendiran et al., 2003; Gu et al., 2007). In contrast to the well studied H3IDC, 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate acid (H3PIDC), a very close analogue of H3IDC, still remains unexplored till now. We report here the single-crystal structure of a new compound, [Fe(H2PIDC)2(H2O)2] (I), in which the H2PIDC monoanion coordinates to the Fe atom, acting as a bidentate ligand.

As shown in Fig. 1, the molecule of (I) is a discrete neutral monomer, in which the Fe atom resides on a crystallographic inversion centre and the asymmetric unit contains one-half of the [Fe(H2PIDC)2(H2O)2] formula unit. Each Fe atom is six-coordinated by two N and two O atoms from two H2PIDC ligands and two water molecule in a highly distorted octahedral geometry. In this complex, the carboxylic acid (H3PIDC) ligand is singly deprotonated and bears a formal charge of -1, and the uncoordinated carboxylate atoms O3 and O2 form an intramolecular hydrogen bond (Table 1). All non-H atoms in the imidazole-4,5-dicarboxyl group are nearly coplanar [the mean deviation is 0.031 (9) Å], and the dihedral angle between imidazole group and pyridine group is 22.6 (1) °. At list in Table 2, a two-dimensional supramolecular layer is constructed via hydrogen-bonding interactions involving the coordinated water molecules, the carboxy O atoms and the protonated imidazole N atoms (Fig.2), and these two-dimensional layers are parallel arranged along b axis (Fig. 3).

Experimental

A mixture of Fe(II) sulfate (0.056 g, 0.2 mmol), 2-(pyridin-3-yl)-1H-imidazole-4,5-dicarboxylic acid (0.047 g, 0.2 mmol) and water (10 ml) was sealed into a Teflon-lined stainless autoclave and heated at 433 K for 4 days. The bomb was allowed to cooled to room temperature gradually and red prismatic crystals of (I) were obtained. Analysis calculated for C20H16FeN6O10: C 43.19, H 2.90, N 15.11; found: C 43.12, H 2.94, N 15.13.

Refinement

Water H atoms and the carboxylic acid H atom were located from difference maps and refined with a DFIX restraint of 0.86 (2) Å applied to the three O—H distances. Aromatic H atoms were positioned geometrically with C—H = 0.95 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the molecular of (I), showing the atom-labelling scheme and displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of (I), showing the two-dimensional hydrogen-bonding network, H atoms not involved in hydrogen bonding have been omited.

Fig. 3.

Fig. 3.

Packing diagram of two-dimensional layers along the b axis.

Crystal data

[Fe(C10H6N3O4)2(H2O)2] Z = 1
Mr = 556.24 F(000) = 284
Triclinic, P1 Dx = 1.732 Mg m3
a = 7.0100 (14) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.6670 (17) Å θ = 2.5–28.0°
c = 9.4110 (19) Å µ = 0.78 mm1
α = 82.28 (3)° T = 173 K
β = 83.84 (3)° Block, yellow
γ = 70.66 (3)° 0.28 × 0.24 × 0.19 mm
V = 533.41 (18) Å3

Data collection

Rigaku Mercury CCD diffractometer 2084 independent reflections
Radiation source: fine-focus sealed tube 1693 reflections with I > 2σ(I)
graphite Rint = 0.023
ω scans θmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) h = −8→8
Tmin = 0.826, Tmax = 0.890 k = −10→10
4126 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.2007P] where P = (Fo2 + 2Fc2)/3
2084 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.47 e Å3
1 restraint Δρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.5000 0.5000 0.0000 0.03010 (18)
O1 0.4346 (3) 0.7540 (2) −0.09416 (18) 0.0407 (5)
O2 0.2752 (3) 1.0178 (2) −0.06408 (18) 0.0410 (5)
O3 0.0627 (3) 1.1808 (2) 0.12660 (19) 0.0408 (5)
O4 −0.0530 (3) 1.1320 (2) 0.35321 (19) 0.0466 (5)
O5 0.7690 (3) 0.5052 (2) 0.07395 (18) 0.0406 (5)
N1 0.3184 (3) 0.6478 (2) 0.17970 (19) 0.0267 (4)
N2 0.1534 (3) 0.7958 (2) 0.3559 (2) 0.0280 (5)
H2A 0.0841 0.8214 0.4319 0.034*
N3 0.2740 (3) 0.3678 (3) 0.6641 (2) 0.0357 (5)
C1 0.3294 (4) 0.8639 (3) −0.0195 (2) 0.0313 (6)
C2 0.2649 (3) 0.8126 (3) 0.1308 (2) 0.0258 (5)
C3 0.1588 (4) 0.9068 (3) 0.2385 (2) 0.0277 (5)
C4 0.0479 (4) 1.0858 (3) 0.2420 (3) 0.0322 (6)
C5 0.2483 (3) 0.6410 (3) 0.3177 (2) 0.0259 (5)
C6 0.2686 (4) 0.4921 (3) 0.4180 (2) 0.0269 (5)
C7 0.2554 (4) 0.4991 (3) 0.5672 (2) 0.0313 (6)
H3 0.2321 0.6026 0.6011 0.038*
C8 0.3003 (4) 0.3402 (3) 0.3698 (3) 0.0332 (6)
H4 0.3060 0.3303 0.2700 0.040*
C9 0.3234 (4) 0.2031 (3) 0.4700 (3) 0.0379 (6)
H1 0.3486 0.0977 0.4392 0.045*
C10 0.3092 (4) 0.2212 (3) 0.6157 (3) 0.0360 (6)
H2 0.3250 0.1268 0.6833 0.043*
H5A 0.8761 0.4145 0.0835 0.043*
H5B 0.7552 0.5726 0.1339 0.043*
H3A 0.137 (4) 1.128 (3) 0.057 (2) 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0395 (3) 0.0268 (3) 0.0151 (3) 0.0007 (2) 0.00222 (19) −0.00396 (19)
O1 0.0548 (12) 0.0334 (10) 0.0192 (8) 0.0012 (9) 0.0110 (8) −0.0027 (7)
O2 0.0584 (12) 0.0293 (10) 0.0224 (9) −0.0029 (9) 0.0075 (8) 0.0046 (7)
O3 0.0584 (13) 0.0267 (10) 0.0264 (10) −0.0017 (9) 0.0053 (8) −0.0029 (7)
O4 0.0665 (14) 0.0351 (10) 0.0239 (9) 0.0033 (9) 0.0048 (9) −0.0113 (8)
O5 0.0457 (11) 0.0410 (11) 0.0269 (9) 0.0002 (9) −0.0032 (8) −0.0112 (8)
N1 0.0350 (11) 0.0254 (10) 0.0140 (9) −0.0028 (9) 0.0027 (8) −0.0035 (8)
N2 0.0352 (11) 0.0279 (11) 0.0152 (9) −0.0039 (9) 0.0064 (8) −0.0052 (8)
N3 0.0473 (13) 0.0365 (12) 0.0190 (10) −0.0098 (10) 0.0000 (9) 0.0003 (9)
C1 0.0391 (14) 0.0307 (13) 0.0164 (11) −0.0024 (11) 0.0023 (10) −0.0019 (10)
C2 0.0318 (12) 0.0249 (12) 0.0145 (11) −0.0025 (10) 0.0024 (9) −0.0013 (9)
C3 0.0342 (13) 0.0276 (13) 0.0182 (11) −0.0059 (10) 0.0001 (9) −0.0030 (9)
C4 0.0385 (14) 0.0304 (13) 0.0225 (12) −0.0032 (11) −0.0022 (10) −0.0054 (10)
C5 0.0304 (12) 0.0266 (12) 0.0165 (11) −0.0038 (10) 0.0008 (9) −0.0039 (9)
C6 0.0303 (12) 0.0290 (13) 0.0181 (11) −0.0064 (10) 0.0021 (9) −0.0020 (9)
C7 0.0419 (15) 0.0288 (13) 0.0204 (12) −0.0075 (11) 0.0001 (10) −0.0046 (10)
C8 0.0447 (15) 0.0312 (14) 0.0198 (11) −0.0080 (11) 0.0048 (10) −0.0051 (10)
C9 0.0508 (17) 0.0270 (13) 0.0319 (14) −0.0079 (12) 0.0008 (12) −0.0043 (11)
C10 0.0435 (15) 0.0301 (14) 0.0285 (13) −0.0075 (12) 0.0012 (11) 0.0032 (11)

Geometric parameters (Å, °)

Fe1—O5i 2.095 (2) N2—C3 1.369 (3)
Fe1—O5 2.095 (2) N2—H2A 0.8325
Fe1—O1i 2.1764 (19) N3—C7 1.338 (3)
Fe1—O1 2.1764 (19) N3—C10 1.344 (3)
Fe1—N1 2.2719 (19) C1—C2 1.493 (3)
Fe1—N1i 2.2719 (19) C2—C3 1.380 (3)
O1—C1 1.244 (3) C3—C4 1.490 (3)
O2—C1 1.284 (3) C5—C6 1.469 (3)
O3—C4 1.289 (3) C6—C8 1.390 (3)
O3—H3A 0.868 (10) C6—C7 1.405 (3)
O4—C4 1.234 (3) C7—H3 0.9500
O5—H5A 0.8910 C8—C9 1.390 (3)
O5—H5B 0.8412 C8—H4 0.9500
N1—C5 1.339 (3) C9—C10 1.390 (4)
N1—C2 1.378 (3) C9—H1 0.9500
N2—C5 1.364 (3) C10—H2 0.9500
O5i—Fe1—O5 180.0 O2—C1—C2 118.6 (2)
O5i—Fe1—O1i 90.33 (8) N1—C2—C3 110.46 (19)
O5—Fe1—O1i 89.67 (8) N1—C2—C1 119.4 (2)
O5i—Fe1—O1 89.67 (8) C3—C2—C1 130.1 (2)
O5—Fe1—O1 90.33 (8) N2—C3—C2 105.0 (2)
O1i—Fe1—O1 180.00 (9) N2—C3—C4 121.4 (2)
O5i—Fe1—N1 89.91 (7) C2—C3—C4 133.4 (2)
O5—Fe1—N1 90.09 (7) O4—C4—O3 124.8 (2)
O1i—Fe1—N1 103.66 (7) O4—C4—C3 118.2 (2)
O1—Fe1—N1 76.34 (7) O3—C4—C3 117.0 (2)
O5i—Fe1—N1i 90.09 (7) N1—C5—N2 110.1 (2)
O5—Fe1—N1i 89.91 (7) N1—C5—C6 126.8 (2)
O1i—Fe1—N1i 76.34 (7) N2—C5—C6 123.1 (2)
O1—Fe1—N1i 103.66 (7) C8—C6—C7 117.7 (2)
N1—Fe1—N1i 180.000 (1) C8—C6—C5 121.7 (2)
C1—O1—Fe1 117.71 (15) C7—C6—C5 120.7 (2)
C4—O3—H3A 113 (2) N3—C7—C6 123.6 (2)
Fe1—O5—H5A 121.1 N3—C7—H3 118.2
Fe1—O5—H5B 115.7 C6—C7—H3 118.2
H5A—O5—H5B 115.2 C9—C8—C6 118.9 (2)
C5—N1—C2 105.66 (18) C9—C8—H4 120.5
C5—N1—Fe1 145.46 (16) C6—C8—H4 120.5
C2—N1—Fe1 108.78 (13) C8—C9—C10 119.5 (2)
C5—N2—C3 108.75 (19) C8—C9—H1 120.2
C5—N2—H2A 126.9 C10—C9—H1 120.2
C3—N2—H2A 123.4 N3—C10—C9 122.2 (2)
C7—N3—C10 118.1 (2) N3—C10—H2 118.9
O1—C1—O2 123.7 (2) C9—C10—H2 118.9
O1—C1—C2 117.7 (2)
O5i—Fe1—O1—C1 87.8 (2) N1—C2—C3—N2 1.7 (3)
O5—Fe1—O1—C1 −92.2 (2) C1—C2—C3—N2 −176.4 (3)
O1i—Fe1—O1—C1 −157 (100) N1—C2—C3—C4 −172.4 (3)
N1—Fe1—O1—C1 −2.2 (2) C1—C2—C3—C4 9.5 (5)
N1i—Fe1—O1—C1 177.8 (2) N2—C3—C4—O4 −1.3 (4)
O5i—Fe1—N1—C5 95.8 (3) C2—C3—C4—O4 172.0 (3)
O5—Fe1—N1—C5 −84.2 (3) N2—C3—C4—O3 179.7 (2)
O1i—Fe1—N1—C5 5.5 (3) C2—C3—C4—O3 −7.0 (4)
O1—Fe1—N1—C5 −174.5 (3) C2—N1—C5—N2 0.0 (3)
N1i—Fe1—N1—C5 −141 (100) Fe1—N1—C5—N2 175.5 (2)
O5i—Fe1—N1—C2 −88.65 (16) C2—N1—C5—C6 −179.4 (2)
O5—Fe1—N1—C2 91.35 (16) Fe1—N1—C5—C6 −3.8 (5)
O1i—Fe1—N1—C2 −178.96 (15) C3—N2—C5—N1 1.1 (3)
O1—Fe1—N1—C2 1.04 (15) C3—N2—C5—C6 −179.5 (2)
N1i—Fe1—N1—C2 34 (100) N1—C5—C6—C8 −23.2 (4)
Fe1—O1—C1—O2 −177.8 (2) N2—C5—C6—C8 157.6 (2)
Fe1—O1—C1—C2 2.8 (3) N1—C5—C6—C7 157.2 (2)
C5—N1—C2—C3 −1.0 (3) N2—C5—C6—C7 −22.1 (4)
Fe1—N1—C2—C3 −178.39 (16) C10—N3—C7—C6 0.7 (4)
C5—N1—C2—C1 177.3 (2) C8—C6—C7—N3 0.8 (4)
Fe1—N1—C2—C1 −0.1 (3) C5—C6—C7—N3 −179.5 (2)
O1—C1—C2—N1 −1.8 (4) C7—C6—C8—C9 −1.9 (4)
O2—C1—C2—N1 178.8 (2) C5—C6—C8—C9 178.4 (2)
O1—C1—C2—C3 176.1 (3) C6—C8—C9—C10 1.6 (4)
O2—C1—C2—C3 −3.3 (4) C7—N3—C10—C9 −1.1 (4)
C5—N2—C3—C2 −1.7 (3) C8—C9—C10—N3 −0.1 (4)
C5—N2—C3—C4 173.3 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O4ii 0.83 2.09 2.852 (3) 152
O5—H5A···O3iii 0.89 2.03 2.899 (3) 165
O5—H5B···N3iv 0.84 2.01 2.780 (3) 152
O3—H3A···O2 0.87 (1) 1.61 (1) 2.479 (3) 176 (3)

Symmetry codes: (ii) −x, −y+2, −z+1; (iii) x+1, y−1, z; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2118).

References

  1. Gu, J. Z., Lu, W. G., Jiang, L., Zhou, H. C. & Lu, T. B. (2007). Inorg. Chem.46, 5835–5837. [DOI] [PubMed]
  2. Liu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806–2807. [DOI] [PubMed]
  3. Maji, T. K., Mostafa, G., Chang, H. C. & Kitagawa, S. (2005). Chem. Commun. pp. 2436–2438. [DOI] [PubMed]
  4. Rajendiran, T. M., Kirk, M. L., Setyawati, I. A., Caudle, M. T., Kampf, J. W. & Pecoraro, V. L. (2003). Chem. Commun. pp. 824–825. [DOI] [PubMed]
  5. Rigaku (2000). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sun, Y. Q., Zhang, J., Chen, Y. M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed.44, 5814–5817. [DOI] [PubMed]
  8. Zou, R. Q., Jiang, L., Senoh, H., Takeichi, N. & Xu, Q. (2005). Chem. Commun. pp. 3526–3528. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027457/bv2118sup1.cif

e-65-0m938-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027457/bv2118Isup2.hkl

e-65-0m938-Isup2.hkl (102.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES