Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 18;65(Pt 8):o1912. doi: 10.1107/S1600536809027469

N′-(Cyclo­hexyl­carbon­yl)isonicotino­hydrazide

H S Naveenkumar a, Amirin Sadikun a,, Pazilah Ibrahim a, Chin Sing Yeap b,§, Hoong-Kun Fun b,*,
PMCID: PMC2977321  PMID: 21583599

Abstract

In the title compound, C13H17N3O2, the mean plane of the cyclo­hexane ring forms a dihedral angle of 33.12 (5)° with the pyridine ring. The two O atoms are twisted away from each other, as indicated by the C—N—N—C torsion angle of −74.97 (9)°. In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds. The structure is also stabilized by C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987). For applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000). For the preparation, see: Besra et al. (1993). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-o1912-scheme1.jpg

Experimental

Crystal data

  • C13H17N3O2

  • M r = 247.30

  • Orthorhombic, Inline graphic

  • a = 9.1184 (2) Å

  • b = 11.5989 (2) Å

  • c = 12.1684 (2) Å

  • V = 1286.97 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.60 × 0.40 × 0.33 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.941, T max = 0.971

  • 27969 measured reflections

  • 3210 independent reflections

  • 3124 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.084

  • S = 1.11

  • 3210 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809027469/kj2133sup1.cif

e-65-o1912-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027469/kj2133Isup2.hkl

e-65-o1912-Isup2.hkl (157.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯N1i 0.911 (18) 2.095 (18) 2.9456 (10) 155.0 (16)
N3—H1N3⋯O2ii 0.900 (16) 1.854 (16) 2.7486 (9) 172.4 (14)
C2—H2⋯O1iii 1.017 (18) 2.527 (18) 3.4971 (11) 159.4 (14)
C4—H4⋯O1iv 0.948 (15) 2.502 (15) 3.3062 (10) 142.6 (12)
C10—H10BCg1v 1.01 (2) 2.78 (3) 3.7299 (14) 157.1 (16)
C13—H13ACg1vi 0.993 (15) 2.958 (16) 3.7039 (10) 132.7 (12)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic. Cg1 is the centroid of the C1/C2/N1/C3–C5 ring.

Acknowledgments

This research is supported by Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815005). HKF and CSY thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks the Malaysian Government and USM for the award of the post of Research Officer under the Science Fund Grant (No. 305/PFIZIK/613312). HSNK is grateful for a USM fellowship for financial assistance.

supplementary crystallographic information

Comment

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). As a part of a current work of synthesis of such derivatives, in this paper we present the crystal structure of the title compound which was synthesized in our lab.

Bond lengths and angles of the title compound (I), (Fig. 1) are within the normal range (Allen et al., 1987). The mean plane of cyclohexane ring forms dihedral angle of 33.12 (5)° with the pyridine ring. The O1 and O2 atoms are twisted away from each other as is indicated by torsion angle C6–N2–N3–C7 [-74.97 (9)°]. In the crystal structure, the molecules are linked into three-dimensional network by the intermolecular N2—H1N2···N1, N3—H1N3···O2, C2—H2···O1 and C4—H4···O1 hydrogen bonds. The structure is also stabilized by C—H···π interactions (Table 1).

Experimental

The isoniazid (INH) derivative was prepared following the procedure by literature (Besra et al., 1993). Dry dichloromethane (30 ml) and 4-dimethylaminopyridine (4-DMAP) (1.2 eq) was added to cyclohexane carbonyl chloride followed by INH (1.1 eq). The reaction mixture was kept in an ice bath for 1 h and then left stirring under nitrogen overnight at room temperature. Dichloromethane (20 ml) was added to the reaction mixture, which was then washed with water, and the organic layer dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to afford the crude product which was purified by column chromatography and recrystallized from methanol to afford colorless crystals.

Refinement

All hydrogen atoms were located from the difference Fourier map and refined freely. As there are not enough anomalous dispersion effects to determine the absolute configuration, 2499 Friedel pairs were merged before final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.

Crystal data

C13H17N3O2 F(000) = 528
Mr = 247.30 Dx = 1.276 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 9922 reflections
a = 9.1184 (2) Å θ = 2.8–35.1°
b = 11.5989 (2) Å µ = 0.09 mm1
c = 12.1684 (2) Å T = 100 K
V = 1286.97 (4) Å3 Block, colourless
Z = 4 0.60 × 0.40 × 0.33 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3210 independent reflections
Radiation source: fine-focus sealed tube 3124 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 35.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −14→14
Tmin = 0.941, Tmax = 0.971 k = −18→17
27969 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.0754P] where P = (Fo2 + 2Fc2)/3
3210 reflections (Δ/σ)max < 0.001
231 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.75737 (8) 1.01913 (6) 1.03928 (5) 0.02041 (13)
O2 0.99005 (6) 0.79925 (5) 1.04401 (5) 0.01593 (11)
N1 1.02861 (8) 1.26064 (6) 0.76325 (6) 0.01714 (12)
N2 0.80178 (7) 0.89033 (6) 0.90156 (5) 0.01293 (11)
N3 0.76418 (7) 0.79834 (6) 0.96907 (5) 0.01347 (11)
C1 0.94236 (10) 1.18220 (7) 0.93422 (6) 0.01703 (14)
C2 1.01495 (11) 1.26604 (7) 0.87318 (7) 0.01889 (14)
C3 0.96940 (10) 1.16932 (7) 0.71250 (6) 0.01606 (13)
C4 0.89624 (9) 1.08036 (7) 0.76639 (6) 0.01426 (12)
C5 0.88303 (8) 1.08714 (6) 0.88042 (6) 0.01264 (12)
C6 0.80847 (8) 0.99670 (6) 0.94875 (6) 0.01322 (12)
C7 0.86549 (7) 0.75756 (6) 1.04018 (6) 0.01175 (11)
C8 0.81852 (8) 0.65554 (6) 1.10913 (6) 0.01238 (11)
C9 0.87614 (11) 0.54417 (7) 1.05682 (7) 0.02033 (15)
C10 0.83192 (15) 0.43958 (8) 1.12611 (10) 0.0300 (2)
C11 0.88525 (14) 0.45089 (10) 1.24449 (11) 0.0315 (2)
C12 0.82967 (13) 0.56214 (10) 1.29578 (7) 0.02597 (18)
C13 0.87382 (11) 0.66737 (8) 1.22748 (7) 0.02036 (15)
H1 0.936 (2) 1.1925 (16) 1.0135 (14) 0.033 (4)*
H2 1.062 (2) 1.3365 (15) 0.9082 (14) 0.032 (4)*
H3 0.9786 (19) 1.1702 (14) 0.6350 (14) 0.027 (4)*
H4 0.8560 (17) 1.0205 (13) 0.7227 (12) 0.018 (3)*
H8 0.7101 (18) 0.6508 (14) 1.1062 (12) 0.021 (3)*
H9A 0.837 (2) 0.5361 (17) 0.9849 (16) 0.042 (5)*
H9B 0.9813 (19) 0.5498 (15) 1.0523 (14) 0.028 (4)*
H10A 0.869 (2) 0.3690 (19) 1.0921 (16) 0.046 (5)*
H10B 0.722 (3) 0.4297 (19) 1.1277 (16) 0.047 (5)*
H11A 0.860 (2) 0.3808 (16) 1.2833 (14) 0.031 (4)*
H11B 0.995 (3) 0.454 (2) 1.249 (2) 0.053 (6)*
H12A 0.872 (2) 0.5711 (18) 1.3708 (15) 0.043 (5)*
H12B 0.722 (2) 0.5602 (16) 1.2991 (13) 0.032 (4)*
H13A 0.8388 (18) 0.7410 (13) 1.2598 (12) 0.018 (3)*
H13B 0.985 (2) 0.6778 (15) 1.2258 (14) 0.030 (4)*
H1N2 0.862 (2) 0.8724 (16) 0.8443 (15) 0.036 (5)*
H1N3 0.6729 (18) 0.7705 (13) 0.9596 (12) 0.022 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0286 (3) 0.0174 (3) 0.0152 (2) 0.0016 (2) 0.0095 (2) 0.0005 (2)
O2 0.0107 (2) 0.0156 (2) 0.0215 (2) −0.00104 (18) −0.00008 (19) 0.0012 (2)
N1 0.0205 (3) 0.0136 (2) 0.0173 (3) −0.0004 (2) 0.0028 (2) 0.0031 (2)
N2 0.0148 (2) 0.0104 (2) 0.0135 (2) −0.00010 (19) 0.00287 (19) 0.00212 (19)
N3 0.0116 (2) 0.0128 (2) 0.0159 (2) −0.00129 (19) −0.0005 (2) 0.0046 (2)
C1 0.0258 (3) 0.0126 (3) 0.0127 (3) −0.0015 (3) 0.0022 (2) −0.0006 (2)
C2 0.0263 (4) 0.0129 (3) 0.0175 (3) −0.0031 (3) 0.0013 (3) 0.0000 (2)
C3 0.0198 (3) 0.0155 (3) 0.0129 (3) 0.0002 (3) 0.0022 (2) 0.0030 (2)
C4 0.0179 (3) 0.0133 (3) 0.0115 (2) −0.0005 (2) 0.0009 (2) 0.0011 (2)
C5 0.0158 (3) 0.0107 (3) 0.0115 (2) 0.0009 (2) 0.0018 (2) 0.0012 (2)
C6 0.0149 (3) 0.0116 (3) 0.0131 (3) 0.0016 (2) 0.0026 (2) 0.0014 (2)
C7 0.0111 (2) 0.0111 (2) 0.0131 (2) 0.0007 (2) 0.0008 (2) −0.0001 (2)
C8 0.0125 (2) 0.0115 (3) 0.0131 (3) 0.0003 (2) 0.0005 (2) 0.0015 (2)
C9 0.0292 (4) 0.0117 (3) 0.0202 (3) −0.0009 (3) 0.0069 (3) −0.0015 (2)
C10 0.0457 (6) 0.0107 (3) 0.0336 (5) −0.0014 (4) 0.0128 (4) 0.0013 (3)
C11 0.0324 (5) 0.0236 (4) 0.0386 (5) 0.0063 (4) 0.0018 (4) 0.0171 (4)
C12 0.0337 (5) 0.0278 (4) 0.0164 (3) −0.0030 (4) −0.0022 (3) 0.0080 (3)
C13 0.0275 (4) 0.0196 (3) 0.0139 (3) −0.0032 (3) −0.0030 (3) 0.0010 (2)

Geometric parameters (Å, °)

O1—C6 1.2241 (9) C7—C8 1.5125 (10)
O2—C7 1.2353 (9) C8—C13 1.5321 (11)
N1—C3 1.3397 (11) C8—C9 1.5329 (11)
N1—C2 1.3448 (11) C8—H8 0.990 (16)
N2—C6 1.3622 (10) C9—C10 1.5315 (13)
N2—N3 1.3895 (9) C9—H9A 0.95 (2)
N2—H1N2 0.910 (19) C9—H9B 0.963 (18)
N3—C7 1.3513 (9) C10—C11 1.5260 (19)
N3—H1N3 0.900 (17) C10—H10A 0.98 (2)
C1—C2 1.3912 (11) C10—H10B 1.01 (2)
C1—C5 1.3917 (11) C11—C12 1.5203 (18)
C1—H1 0.973 (18) C11—H11A 0.967 (19)
C2—H2 1.017 (18) C11—H11B 1.00 (3)
C3—C4 1.3927 (11) C12—C13 1.5306 (13)
C3—H3 0.946 (17) C12—H12A 0.997 (19)
C4—C5 1.3950 (10) C12—H12B 0.98 (2)
C4—H4 0.948 (15) C13—H13A 0.993 (15)
C5—C6 1.5014 (10) C13—H13B 1.02 (2)
C3—N1—C2 117.26 (7) C13—C8—H8 111.5 (8)
C6—N2—N3 117.22 (6) C9—C8—H8 106.3 (9)
C6—N2—H1N2 120.2 (12) C10—C9—C8 110.40 (7)
N3—N2—H1N2 115.2 (11) C10—C9—H9A 109.4 (13)
C7—N3—N2 118.60 (6) C8—C9—H9A 109.8 (13)
C7—N3—H1N3 126.1 (10) C10—C9—H9B 110.4 (10)
N2—N3—H1N3 115.3 (10) C8—C9—H9B 107.9 (11)
C2—C1—C5 119.18 (7) H9A—C9—H9B 109.0 (17)
C2—C1—H1 118.0 (11) C11—C10—C9 111.57 (9)
C5—C1—H1 122.8 (11) C11—C10—H10A 111.1 (12)
N1—C2—C1 122.85 (8) C9—C10—H10A 109.8 (12)
N1—C2—H2 114.5 (10) C11—C10—H10B 107.9 (11)
C1—C2—H2 122.6 (10) C9—C10—H10B 111.2 (12)
N1—C3—C4 124.18 (7) H10A—C10—H10B 105.1 (17)
N1—C3—H3 114.5 (10) C12—C11—C10 110.75 (8)
C4—C3—H3 121.3 (10) C12—C11—H11A 115.7 (11)
C3—C4—C5 117.90 (7) C10—C11—H11A 108.2 (11)
C3—C4—H4 117.7 (9) C12—C11—H11B 106.4 (14)
C5—C4—H4 124.4 (9) C10—C11—H11B 112.2 (15)
C1—C5—C4 118.62 (7) H11A—C11—H11B 103.5 (18)
C1—C5—C6 117.98 (6) C11—C12—C13 111.48 (8)
C4—C5—C6 123.41 (7) C11—C12—H12A 109.6 (12)
O1—C6—N2 123.70 (7) C13—C12—H12A 108.2 (12)
O1—C6—C5 121.48 (7) C11—C12—H12B 109.3 (11)
N2—C6—C5 114.82 (6) C13—C12—H12B 107.7 (11)
O2—C7—N3 121.04 (7) H12A—C12—H12B 110.6 (16)
O2—C7—C8 123.07 (7) C12—C13—C8 110.63 (7)
N3—C7—C8 115.81 (6) C12—C13—H13A 112.7 (9)
C7—C8—C13 110.98 (6) C8—C13—H13A 110.1 (9)
C7—C8—C9 109.38 (6) C12—C13—H13B 111.5 (10)
C13—C8—C9 110.67 (7) C8—C13—H13B 108.6 (9)
C7—C8—H8 107.9 (9) H13A—C13—H13B 103.0 (14)
C6—N2—N3—C7 −74.97 (9) N2—N3—C7—O2 −1.43 (11)
C3—N1—C2—C1 −0.37 (13) N2—N3—C7—C8 −178.54 (6)
C5—C1—C2—N1 1.17 (14) O2—C7—C8—C13 43.39 (10)
C2—N1—C3—C4 −0.43 (13) N3—C7—C8—C13 −139.56 (7)
N1—C3—C4—C5 0.40 (13) O2—C7—C8—C9 −79.00 (9)
C2—C1—C5—C4 −1.15 (12) N3—C7—C8—C9 98.04 (8)
C2—C1—C5—C6 178.57 (8) C7—C8—C9—C10 179.16 (8)
C3—C4—C5—C1 0.42 (12) C13—C8—C9—C10 56.58 (10)
C3—C4—C5—C6 −179.29 (7) C8—C9—C10—C11 −56.32 (12)
N3—N2—C6—O1 −14.45 (11) C9—C10—C11—C12 55.80 (13)
N3—N2—C6—C5 166.16 (6) C10—C11—C12—C13 −55.73 (12)
C1—C5—C6—O1 23.87 (12) C11—C12—C13—C8 56.45 (11)
C4—C5—C6—O1 −156.42 (8) C7—C8—C13—C12 −178.34 (7)
C1—C5—C6—N2 −156.72 (7) C9—C8—C13—C12 −56.70 (10)
C4—C5—C6—N2 22.99 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···N1i 0.911 (18) 2.095 (18) 2.9456 (10) 155.0 (16)
N3—H1N3···O2ii 0.900 (16) 1.854 (16) 2.7486 (9) 172.4 (14)
C2—H2···O1iii 1.017 (18) 2.527 (18) 3.4971 (11) 159.4 (14)
C4—H4···O1iv 0.948 (15) 2.502 (15) 3.3062 (10) 142.6 (12)
C10—H10B···Cg1v 1.01 (2) 2.78 (3) 3.7299 (14) 157.1 (16)
C13—H13A···Cg1vi 0.993 (15) 2.958 (16) 3.7039 (10) 132.7 (12)

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) x−1/2, −y+3/2, −z+2; (iii) x+1/2, −y+5/2, −z+2; (iv) −x+3/2, −y+2, z−1/2; (v) −x−1, y+3/2, −z+5/2; (vi) −x+3/2, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2133).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Besra, G. S., Minnikin, D. E., Wheeler, P. R. & Ratledge, C. (1993). Chem. Phys. Lipids, 66, 23–34. [DOI] [PubMed]
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Janin, Y. L. (2007). Bioorg. Med. Chem.15, 2479–2513. [DOI] [PubMed]
  6. Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett.15, 2509–2513. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Slayden, R. A. & Barry, C. E. (2000). Microbes Infect.2, 659–669. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809027469/kj2133sup1.cif

e-65-o1912-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027469/kj2133Isup2.hkl

e-65-o1912-Isup2.hkl (157.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES