Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 29;65(Pt 8):o2017. doi: 10.1107/S1600536809029225

(E)-3-(2-Hydr­oxy-3-methoxy­benzyl­idene­amino)benzonitrile

Jian-Cheng Zhou a,*, Chuan-Ming Zhang a, Zheng-Yun Zhang a, Nai-Xu Li a
PMCID: PMC2977331  PMID: 21583688

Abstract

The mol­ecule of the title compound, C15H12N2O2, displays a trans configuration with respect to the C=N double bond. The dihedral angle between the two benzene rings is 30.46 (14)°. A strong intra­molecular O—H⋯O hydrogen bond stabilizes the mol­ecular structure.

Related literature

For the magnetic and biological properties of Schiff bases, see: May et al. (2004); Weber et al. (2007). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o2017-scheme1.jpg

Experimental

Crystal data

  • C15H12N2O2

  • M r = 252.27

  • Monoclinic, Inline graphic

  • a = 15.476 (5) Å

  • b = 5.9927 (19) Å

  • c = 15.413 (7) Å

  • β = 116.127 (3)°

  • V = 1283.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.973, T max = 0.991

  • 5235 measured reflections

  • 1470 independent reflections

  • 1808 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.124

  • S = 1.03

  • 1470 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029225/rz2356sup1.cif

e-65-o2017-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029225/rz2356Isup2.hkl

e-65-o2017-Isup2.hkl (72.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.82 2.18 2.645 (4) 117

supplementary crystallographic information

Comment

Schiff base compounds have received considerable attention for many years because these compounds play important role in coordination chemistry related to magnetism (Weber, et al., 2007) and biological process (May, et al.,2004). Our group is interested in the synthesis and characterization of Schiff base ligands. Here, we report the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The molecule displays a trans configuration about the central C=N double bond and adopts the phenol–imine tautomeric form, with a strong intramolecular O—H···O hydrogen bond (Table 1). Bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angle between two benzene rings is 30.46 (14)°. The crystal packing is stabilized only by van der Waals interactions.

Experimental

3-Aminobenzonitrile (0.59 g, 5 mmol) and 2-hydroxynaphthalene-1-carbaldehyde (0.760 g, 5 mmol) were dissolved in ethanol (25 ml). The resulting mixture was heated to reflux for 5 h, then cooled to room temperature. The solid obtained product was collected by filtration. Crystals suitable for X-ray diffraction studies were obtained on slow evaporation of the solvent at room temperature.

Refinement

All H atoms were located geometrically and treated as riding atoms, with O—H = 0.82 Å, C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for hydroxy and methyl H atoms. Due to lack of significant anomalous dispersion effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C15H12N2O2 F(000) = 528
Mr = 252.27 Dx = 1.306 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 1698 reflections
a = 15.476 (5) Å θ = 3.1–27.3°
b = 5.9927 (19) Å µ = 0.09 mm1
c = 15.413 (7) Å T = 293 K
β = 116.127 (3)° Block, yellow
V = 1283.5 (8) Å3 0.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1470 independent reflections
Radiation source: fine-focus sealed tube 1808 reflections with I > 2σ(I)
graphite Rint = 0.022
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 2.9°
φ and ω scans h = −20→20
Absorption correction: multi-scan (SADABS; Bruker,2000) k = −7→7
Tmin = 0.973, Tmax = 0.991 l = −19→19
5235 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0766P)2] where P = (Fo2 + 2Fc2)/3
1470 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.49736 (19) 0.0595 (4) 0.27600 (18) 0.0540 (6)
C2 0.3732 (2) −0.3128 (5) 0.1960 (2) 0.0509 (7)
O1 0.37225 (17) −0.2232 (4) 0.27625 (16) 0.0617 (6)
H1A 0.3362 −0.2959 0.2915 0.093*
C1 0.4293 (2) −0.2203 (5) 0.1547 (2) 0.0516 (8)
C3 0.3177 (2) −0.5039 (6) 0.1545 (2) 0.0549 (7)
C8 0.4899 (2) −0.0288 (5) 0.1971 (2) 0.0538 (7)
H8A 0.5244 0.0322 0.1664 0.065*
C6 0.4292 (3) −0.3209 (6) 0.0714 (2) 0.0607 (8)
H6A 0.4662 −0.2602 0.0433 0.073*
C4 0.3194 (2) −0.5982 (6) 0.0740 (2) 0.0613 (9)
H4A 0.2830 −0.7252 0.0468 0.074*
O2 0.26595 (18) −0.5821 (4) 0.20096 (17) 0.0703 (7)
C9 0.5623 (2) 0.2388 (5) 0.3193 (2) 0.0497 (7)
C11 0.5989 (2) 0.5663 (5) 0.4178 (2) 0.0536 (8)
C10 0.5378 (2) 0.3913 (5) 0.3722 (2) 0.0520 (7)
H10A 0.4803 0.3758 0.3770 0.062*
C12 0.6857 (3) 0.5916 (6) 0.4126 (3) 0.0623 (8)
H12A 0.7267 0.7099 0.4434 0.075*
C5 0.3752 (2) −0.5055 (7) 0.0327 (2) 0.0663 (9)
H5A 0.3754 −0.5709 −0.0219 0.080*
C7 0.2045 (3) −0.7693 (6) 0.1576 (3) 0.0754 (11)
H7A 0.1716 −0.8094 0.1955 0.113*
H7B 0.2425 −0.8933 0.1549 0.113*
H7C 0.1583 −0.7309 0.0934 0.113*
C13 0.7098 (3) 0.4369 (6) 0.3605 (2) 0.0641 (9)
H13A 0.7678 0.4513 0.3565 0.077*
C14 0.6495 (2) 0.2616 (6) 0.3144 (2) 0.0583 (8)
H14A 0.6670 0.1583 0.2800 0.070*
C15 0.5744 (3) 0.7276 (6) 0.4731 (2) 0.0616 (9)
N2 0.5552 (3) 0.8546 (6) 0.5162 (3) 0.0899 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0569 (15) 0.0522 (14) 0.0546 (13) 0.0032 (12) 0.0259 (11) −0.0012 (11)
C2 0.0500 (17) 0.0543 (17) 0.0498 (16) 0.0108 (14) 0.0231 (14) −0.0003 (13)
O1 0.0663 (14) 0.0705 (14) 0.0604 (12) −0.0002 (11) 0.0389 (11) −0.0077 (11)
C1 0.0483 (17) 0.0575 (19) 0.0494 (16) 0.0080 (13) 0.0218 (14) −0.0031 (13)
C3 0.0488 (18) 0.0570 (19) 0.0581 (18) 0.0041 (15) 0.0226 (14) −0.0006 (15)
C8 0.0562 (18) 0.0572 (18) 0.0514 (16) 0.0041 (15) 0.0266 (14) −0.0009 (14)
C6 0.0557 (18) 0.076 (2) 0.0547 (17) −0.0003 (17) 0.0283 (15) −0.0140 (16)
C4 0.057 (2) 0.059 (2) 0.0614 (19) 0.0009 (16) 0.0197 (16) −0.0090 (15)
O2 0.0728 (16) 0.0706 (16) 0.0700 (14) −0.0105 (13) 0.0336 (12) −0.0020 (11)
C9 0.0571 (19) 0.0498 (18) 0.0434 (14) 0.0009 (14) 0.0234 (14) 0.0012 (12)
C11 0.062 (2) 0.0524 (18) 0.0500 (16) 0.0002 (14) 0.0278 (15) 0.0015 (12)
C10 0.0583 (19) 0.0550 (18) 0.0480 (15) −0.0007 (15) 0.0281 (14) 0.0001 (13)
C12 0.061 (2) 0.066 (2) 0.0612 (18) −0.0053 (18) 0.0280 (16) 0.0001 (16)
C5 0.063 (2) 0.078 (2) 0.0588 (18) 0.0064 (19) 0.0274 (17) −0.0169 (17)
C7 0.067 (2) 0.061 (2) 0.087 (3) −0.0073 (19) 0.023 (2) 0.0085 (19)
C13 0.055 (2) 0.077 (2) 0.0641 (19) 0.0004 (18) 0.0303 (17) 0.0022 (17)
C14 0.062 (2) 0.061 (2) 0.0599 (18) 0.0086 (16) 0.0333 (17) −0.0002 (14)
C15 0.069 (2) 0.062 (2) 0.0601 (18) −0.0129 (16) 0.0340 (17) −0.0106 (16)
N2 0.103 (3) 0.091 (2) 0.097 (2) −0.026 (2) 0.063 (2) −0.037 (2)

Geometric parameters (Å, °)

N1—C8 1.284 (4) C9—C10 1.383 (4)
N1—C9 1.421 (4) C9—C14 1.391 (5)
C2—O1 1.354 (4) C11—C10 1.379 (4)
C2—C1 1.397 (4) C11—C12 1.389 (5)
C2—C3 1.405 (5) C11—C15 1.445 (5)
O1—H1A 0.8200 C10—H10A 0.9300
C1—C6 1.418 (4) C12—C13 1.381 (5)
C1—C8 1.444 (5) C12—H12A 0.9300
C3—O2 1.371 (4) C5—H5A 0.9300
C3—C4 1.374 (5) C7—H7A 0.9600
C8—H8A 0.9300 C7—H7B 0.9600
C6—C5 1.356 (5) C7—H7C 0.9600
C6—H6A 0.9300 C13—C14 1.377 (5)
C4—C5 1.393 (5) C13—H13A 0.9300
C4—H4A 0.9300 C14—H14A 0.9300
O2—C7 1.432 (4) C15—N2 1.134 (4)
C8—N1—C9 120.4 (3) C10—C11—C15 120.7 (3)
O1—C2—C1 121.2 (3) C12—C11—C15 118.2 (3)
O1—C2—C3 119.3 (3) C9—C10—C11 119.9 (3)
C1—C2—C3 119.5 (3) C9—C10—H10A 120.0
C2—O1—H1A 109.5 C11—C10—H10A 120.0
C2—C1—C6 119.4 (3) C13—C12—C11 118.4 (3)
C2—C1—C8 121.3 (3) C13—C12—H12A 120.8
C6—C1—C8 119.3 (3) C11—C12—H12A 120.8
O2—C3—C4 125.4 (3) C6—C5—C4 120.7 (3)
O2—C3—C2 114.9 (3) C6—C5—H5A 119.7
C4—C3—C2 119.7 (3) C4—C5—H5A 119.7
N1—C8—C1 121.7 (3) O2—C7—H7A 109.5
N1—C8—H8A 119.2 O2—C7—H7B 109.5
C1—C8—H8A 119.2 H7A—C7—H7B 109.5
C5—C6—C1 120.0 (3) O2—C7—H7C 109.5
C5—C6—H6A 120.0 H7A—C7—H7C 109.5
C1—C6—H6A 120.0 H7B—C7—H7C 109.5
C3—C4—C5 120.7 (3) C14—C13—C12 121.1 (3)
C3—C4—H4A 119.7 C14—C13—H13A 119.5
C5—C4—H4A 119.7 C12—C13—H13A 119.5
C3—O2—C7 116.4 (3) C13—C14—C9 120.1 (3)
C10—C9—C14 119.4 (3) C13—C14—H14A 120.0
C10—C9—N1 117.1 (3) C9—C14—H14A 120.0
C14—C9—N1 123.4 (3) N2—C15—C11 179.8 (4)
C10—C11—C12 121.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O2 0.82 2.18 2.645 (4) 117

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2356).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc.126, 4145–4156. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem.633, 1159–1162.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029225/rz2356sup1.cif

e-65-o2017-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029225/rz2356Isup2.hkl

e-65-o2017-Isup2.hkl (72.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES