Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 29;65(Pt 8):o2022. doi: 10.1107/S1600536809029316

(E)-3-[(4-Butyl­phen­yl)imino­meth­yl]benzene-1,2-diol

Zeynep Keleşoğlu a, Orhan Büyükgüngör a,*, Çiğdem Albayrak b, Mustafa Odabaşoğlu c
PMCID: PMC2977352  PMID: 21583691

Abstract

The title compound, C17H19NO2, exists as an enol–imine tautomer. The dihedral angle between the two benzene rings is 4.6 (2)°. The mol­ecular structure is stabilized by intramol­ecular O—H⋯O and O—H⋯N hydrogen bonds which generate S(5) and S(6) ring motifs, respectively. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of O—H⋯O hydrogen bonds. In addition, C—H⋯π inter­actions involving both benzene rings are observed.

Related literature

For general background to Schiff bases, see: Lozier et al. (1975); Calligaris et al. (1972); Maslen & Waters (1975); Steward & Lingafelter (1959). For the photochromic and thermochromic characteristics of Schiff base compounds, see: Hadjoudis et al. (1987); Moustakali-Mavridis et al. (1980). For graph-set motifs, see: Bernstein et al. (1995). For related structures, see: Temel et al. (2007); Koşar et al. (2005).graphic file with name e-65-o2022-scheme1.jpg

Experimental

Crystal data

  • C17H19NO2

  • M r = 269.33

  • Monoclinic, Inline graphic

  • a = 16.2774 (13) Å

  • b = 6.0148 (6) Å

  • c = 17.6166 (14) Å

  • β = 121.476 (5)°

  • V = 1471.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.50 × 0.45 × 0.03 mm

Data collection

  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.954, T max = 0.998

  • 8711 measured reflections

  • 3061 independent reflections

  • 1643 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.163

  • S = 1.07

  • 3061 reflections

  • 189 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029316/ci2863sup1.cif

e-65-o2022-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029316/ci2863Isup2.hkl

e-65-o2022-Isup2.hkl (147.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.86 (2) 2.21 (3) 2.728 (2) 118 (3)
O2—H2⋯O1i 0.86 (2) 2.08 (3) 2.802 (3) 141 (3)
O1—H1⋯N1 0.88 (2) 1.74 (2) 2.555 (2) 155 (3)
C6—H6⋯Cg2ii 0.93 2.85 3.645 (3) 144
C10—H10⋯Cg1ii 0.93 2.80 3.491 (3) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Schiff bases are widely used as ligands in the field of coordination chemistry and they play an important role in various field of chemistry due to their biological activities (Lozier et al., 1975). o-Hydroxy Schiff bases derived from the reaction of o-hydroxy aldehydes with aniline have been examined extensively (Steward & Lingafelter, 1959; Calligaris et al., 1972; Maslen & Waters, 1975). Some Schiff bases derived from salicylaldehyde have attracted the interest of chemists and physicists because they show thermochromism and photochromism in the solid state by H-atom transfer from the hydroxy O atom to the N atom (Hadjoudis, et al., 1987). It has been proposed that molecules showing thermochromism are planar while those showing photochromism are non-planar (Moustakali-Mavridis et al., 1980). There are two types of intramolecular hydrogen bonds in Schiff bases arising from the keto-amine (N—H···O) and enol-imine (N···H—O) tautomeric forms.

X-ray analysis shows that compound (I) prefers the enol-imine tautomeric form with a strong intramolecular O—H···N hydrogen bond. A H atom is located on atom O1, thus the enol-imine tautomer is favoured over the keto-amine form, as indicated by the C2—O1 [1.333 (2) Å], C7—N1 [1.297 (2) Å], C1—C7 [1.433 (2) Å] and C1—C2 [1.406 (2) Å] bond lengths (Fig. 1). The C2—O1 bond length of 1.333 (2) Å indicates a single-bond character, whereas the C7—N1 bond length of 1.297 (2) Å indicates a high degree of double-bond character. Similar results were observed for (E)-3-[(2-fluorophenylimino)methyl]benzene-1,2-diol [C—O = 1.354 (19) Å, C—N = 1.285 (2) Å; Temel et al., 2007].

The molecule of (I) is nearly planar, with a dihedral angle between the benzene rings A(C1-C6) and B(C8-C13) of 4.6 (2) Å. Intramolecular O—H···O and O—H···N hydrogen bonds generate S(5) and S(6) ring motifs, respectively (Bernstein et al., 1995) (Fig. 1). The nearly planar S(6) ring forms dihedral angles of 2.3 (4)° and 2.5 (5)° with the rings A and B, respectively.

In the crystal, molecules of (I) are linked by intermolecular O—H···O hydrogen bonds forming centrosymmetric dimers (Fig.2). In addition, C6—H6···Cg2 and C10—H10···Cg1 interactions (Cg1 and Cg2 are the centroids of the C1—C6 and C8—C13 rings, respectively) are observed (Table 1).

Experimental

Compound (I) was prepared by refluxing a mixture of 2,3-dihydroxy benzaldehyde (0.5 g, 0.0036 mol) in ethanol (20 ml) and 4-butilanilyne (0.54 g 0.0036 mol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. The crystals of (I) suitable for X-ray analysis were obtained from a methanol solution by slow evaporation (yield 85%; m.p. 363–364 K).

Refinement

The hydroxyl H atoms were located in a difference Fourier map and were refined with a O-H distance restraint of 0.83 (2) Å. All other H-atoms were refined using a riding model with C-H = 0.93–0.96 Å (Uiso = 1.2Ueq of the parent atom) for aromatic and ethyl C atoms and C-H = 0.97 Å (Uiso = 1.5Ueq of the parent atom) for methyl C atoms.

Figures

Fig. 1.

Fig. 1.

An ORTEP view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Dashed lines indicate H-bonds.

Fig. 2.

Fig. 2.

A packing diagram for (I), showing the formation of dimers through O—H···O hydrogen bonds. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity [symmetry code (i): 1-x, 3-y, -z].

Crystal data

C17H19NO2 F(000) = 576
Mr = 269.33 Dx = 1.216 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8711 reflections
a = 16.2774 (13) Å θ = 1.4–27.4°
b = 6.0148 (6) Å µ = 0.08 mm1
c = 17.6166 (14) Å T = 296 K
β = 121.476 (5)° Thin plate, red
V = 1471.0 (2) Å3 0.50 × 0.45 × 0.03 mm
Z = 4

Data collection

Stoe IPDSII diffractometer 3061 independent reflections
Radiation source: fine-focus sealed tube 1643 reflections with I > 2σ(I)
graphite Rint = 0.062
Detector resolution: 6.67 pixels mm-1 θmax = 26.5°, θmin = 1.5°
rotation method scans h = −20→20
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −7→7
Tmin = 0.954, Tmax = 0.998 l = −22→22
8711 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.0507P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.044
3061 reflections Δρmax = 0.15 e Å3
189 parameters Δρmin = −0.15 e Å3
2 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0060 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.57490 (18) 0.9538 (4) 0.13401 (17) 0.0578 (6)
C2 0.57322 (18) 1.1547 (4) 0.09238 (17) 0.0572 (6)
C3 0.64541 (18) 1.1943 (4) 0.07262 (18) 0.0613 (7)
C4 0.71906 (19) 1.0448 (5) 0.0989 (2) 0.0690 (8)
H4 0.7677 1.0749 0.0876 0.083*
C5 0.7222 (2) 0.8493 (5) 0.1423 (2) 0.0733 (8)
H5 0.7726 0.7496 0.1597 0.088*
C6 0.65099 (19) 0.8032 (4) 0.15939 (18) 0.0666 (7)
H6 0.6530 0.6715 0.1880 0.080*
C7 0.49848 (19) 0.9019 (4) 0.14886 (18) 0.0621 (7)
H7 0.4991 0.7663 0.1746 0.074*
C8 0.34786 (18) 0.9936 (4) 0.13574 (17) 0.0586 (6)
C9 0.3369 (2) 0.8029 (5) 0.1736 (2) 0.0760 (8)
H9 0.3838 0.6926 0.1947 0.091*
C10 0.2569 (2) 0.7761 (5) 0.1801 (2) 0.0787 (9)
H10 0.2511 0.6477 0.2064 0.094*
C11 0.1851 (2) 0.9339 (5) 0.1489 (2) 0.0697 (8)
C12 0.1964 (2) 1.1213 (5) 0.1113 (2) 0.0789 (9)
H12 0.1490 1.2305 0.0898 0.095*
C13 0.2768 (2) 1.1527 (4) 0.1044 (2) 0.0732 (8)
H13 0.2826 1.2819 0.0785 0.088*
C14 0.0994 (2) 0.9044 (5) 0.1604 (3) 0.0939 (10)
H14A 0.1223 0.9125 0.2234 0.113*
H14B 0.0555 1.0278 0.1314 0.113*
C15 0.0450 (2) 0.6941 (6) 0.1246 (2) 0.0910 (10)
H15A 0.0880 0.5706 0.1557 0.109*
H15B 0.0247 0.6822 0.0623 0.109*
C16 −0.0432 (2) 0.6723 (6) 0.1326 (3) 0.0975 (11)
H16A −0.0230 0.6826 0.1949 0.117*
H16B −0.0862 0.7959 0.1018 0.117*
C17 −0.0972 (3) 0.4600 (6) 0.0956 (3) 0.1137 (13)
H17A −0.1126 0.4420 0.0354 0.171*
H17B −0.1555 0.4640 0.0967 0.171*
H17C −0.0581 0.3375 0.1310 0.171*
N1 0.42843 (15) 1.0402 (3) 0.12717 (14) 0.0599 (6)
O1 0.50446 (13) 1.3071 (3) 0.06822 (13) 0.0666 (5)
O2 0.64235 (14) 1.3817 (3) 0.02744 (15) 0.0767 (6)
H1 0.466 (2) 1.247 (5) 0.083 (2) 0.115*
H2 0.5901 (17) 1.449 (5) 0.016 (2) 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0654 (15) 0.0468 (13) 0.0619 (17) −0.0011 (12) 0.0337 (14) 0.0022 (12)
C2 0.0608 (15) 0.0481 (13) 0.0663 (17) −0.0007 (12) 0.0355 (14) −0.0042 (12)
C3 0.0708 (16) 0.0471 (13) 0.0725 (19) −0.0035 (12) 0.0421 (15) −0.0018 (13)
C4 0.0678 (16) 0.0638 (16) 0.083 (2) −0.0022 (14) 0.0445 (16) −0.0101 (16)
C5 0.0736 (18) 0.0612 (17) 0.088 (2) 0.0099 (14) 0.0442 (17) −0.0008 (16)
C6 0.0732 (17) 0.0527 (14) 0.0730 (19) 0.0058 (13) 0.0375 (15) 0.0042 (14)
C7 0.0723 (17) 0.0512 (14) 0.0642 (18) −0.0018 (13) 0.0367 (14) 0.0041 (13)
C8 0.0630 (15) 0.0535 (14) 0.0608 (17) −0.0019 (12) 0.0335 (13) −0.0001 (13)
C9 0.0702 (17) 0.0635 (16) 0.097 (2) 0.0085 (14) 0.0454 (17) 0.0242 (17)
C10 0.0731 (17) 0.0723 (18) 0.096 (2) 0.0003 (15) 0.0476 (17) 0.0199 (17)
C11 0.0681 (17) 0.0650 (17) 0.081 (2) 0.0001 (14) 0.0426 (16) −0.0011 (16)
C12 0.0754 (19) 0.0657 (17) 0.103 (2) 0.0118 (15) 0.0521 (19) 0.0094 (17)
C13 0.0798 (18) 0.0568 (15) 0.091 (2) 0.0072 (14) 0.0504 (17) 0.0138 (16)
C14 0.087 (2) 0.084 (2) 0.129 (3) −0.0094 (18) 0.069 (2) −0.016 (2)
C15 0.0775 (19) 0.091 (2) 0.117 (3) −0.0056 (18) 0.059 (2) −0.007 (2)
C16 0.084 (2) 0.107 (3) 0.121 (3) −0.0090 (19) 0.066 (2) −0.008 (2)
C17 0.106 (3) 0.095 (3) 0.161 (4) −0.010 (2) 0.085 (3) −0.002 (3)
N1 0.0647 (12) 0.0532 (12) 0.0649 (15) −0.0010 (11) 0.0361 (11) 0.0026 (11)
O1 0.0737 (12) 0.0515 (10) 0.0877 (14) 0.0050 (9) 0.0512 (11) 0.0095 (10)
O2 0.0887 (14) 0.0557 (11) 0.1117 (17) 0.0022 (10) 0.0704 (14) 0.0086 (11)

Geometric parameters (Å, °)

C1—C6 1.406 (3) C10—H10 0.93
C1—C2 1.406 (3) C11—C12 1.367 (4)
C1—C7 1.433 (3) C11—C14 1.520 (4)
C2—O1 1.333 (3) C12—C13 1.389 (4)
C2—C3 1.409 (3) C12—H12 0.93
C3—O2 1.365 (3) C13—H13 0.93
C3—C4 1.371 (4) C14—C15 1.483 (4)
C4—C5 1.389 (4) C14—H14A 0.97
C4—H4 0.93 C14—H14B 0.97
C5—C6 1.370 (4) C15—C16 1.519 (4)
C5—H5 0.93 C15—H15A 0.97
C6—H6 0.93 C15—H15B 0.97
C7—N1 1.297 (3) C16—C17 1.493 (5)
C7—H7 0.93 C16—H16A 0.97
C8—C13 1.375 (3) C16—H16B 0.97
C8—C9 1.384 (3) C17—H17A 0.96
C8—N1 1.424 (3) C17—H17B 0.96
C9—C10 1.375 (4) C17—H17C 0.96
C9—H9 0.93 O1—H1 0.88 (2)
C10—C11 1.379 (4) O2—H2 0.86 (2)
C6—C1—C2 119.6 (2) C11—C12—C13 121.7 (3)
C6—C1—C7 120.4 (2) C11—C12—H12 119.1
C2—C1—C7 120.0 (2) C13—C12—H12 119.1
O1—C2—C1 122.8 (2) C8—C13—C12 120.2 (3)
O1—C2—C3 118.3 (2) C8—C13—H13 119.9
C1—C2—C3 118.9 (2) C12—C13—H13 119.9
O2—C3—C4 119.8 (2) C15—C14—C11 115.4 (3)
O2—C3—C2 120.2 (2) C15—C14—H14A 108.4
C4—C3—C2 120.0 (2) C11—C14—H14A 108.4
C3—C4—C5 121.1 (2) C15—C14—H14B 108.4
C3—C4—H4 119.5 C11—C14—H14B 108.4
C5—C4—H4 119.5 H14A—C14—H14B 107.5
C6—C5—C4 120.0 (3) C14—C15—C16 114.7 (3)
C6—C5—H5 120.0 C14—C15—H15A 108.6
C4—C5—H5 120.0 C16—C15—H15A 108.6
C5—C6—C1 120.4 (3) C14—C15—H15B 108.6
C5—C6—H6 119.8 C16—C15—H15B 108.6
C1—C6—H6 119.8 H15A—C15—H15B 107.6
N1—C7—C1 121.3 (2) C17—C16—C15 113.8 (3)
N1—C7—H7 119.3 C17—C16—H16A 108.8
C1—C7—H7 119.3 C15—C16—H16A 108.8
C13—C8—C9 118.5 (2) C17—C16—H16B 108.8
C13—C8—N1 116.7 (2) C15—C16—H16B 108.8
C9—C8—N1 124.8 (2) H16A—C16—H16B 107.7
C10—C9—C8 120.2 (3) C16—C17—H17A 109.5
C10—C9—H9 119.9 C16—C17—H17B 109.5
C8—C9—H9 119.9 H17A—C17—H17B 109.5
C9—C10—C11 121.9 (3) C16—C17—H17C 109.5
C9—C10—H10 119.0 H17A—C17—H17C 109.5
C11—C10—H10 119.0 H17B—C17—H17C 109.5
C12—C11—C10 117.4 (2) C7—N1—C8 124.0 (2)
C12—C11—C14 121.7 (3) C2—O1—H1 104 (2)
C10—C11—C14 120.8 (3) C3—O2—H2 105 (2)
C6—C1—C2—O1 −178.6 (2) N1—C8—C9—C10 178.8 (3)
C7—C1—C2—O1 2.6 (4) C8—C9—C10—C11 0.8 (5)
C6—C1—C2—C3 3.5 (4) C9—C10—C11—C12 −0.5 (5)
C7—C1—C2—C3 −175.4 (2) C9—C10—C11—C14 −177.4 (3)
O1—C2—C3—O2 −2.0 (4) C10—C11—C12—C13 0.1 (5)
C1—C2—C3—O2 176.0 (2) C14—C11—C12—C13 177.0 (3)
O1—C2—C3—C4 177.9 (2) C9—C8—C13—C12 0.3 (4)
C1—C2—C3—C4 −4.1 (4) N1—C8—C13—C12 −179.2 (2)
O2—C3—C4—C5 −177.8 (3) C11—C12—C13—C8 0.0 (5)
C2—C3—C4—C5 2.4 (4) C12—C11—C14—C15 128.0 (4)
C3—C4—C5—C6 0.0 (4) C10—C11—C14—C15 −55.2 (4)
C4—C5—C6—C1 −0.6 (4) C11—C14—C15—C16 −177.2 (3)
C2—C1—C6—C5 −1.2 (4) C14—C15—C16—C17 179.6 (3)
C7—C1—C6—C5 177.6 (3) C1—C7—N1—C8 176.5 (2)
C6—C1—C7—N1 178.9 (3) C13—C8—N1—C7 −176.0 (3)
C2—C1—C7—N1 −2.2 (4) C9—C8—N1—C7 4.6 (4)
C13—C8—C9—C10 −0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1 0.86 (2) 2.21 (3) 2.728 (2) 118 (3)
O2—H2···O1i 0.86 (2) 2.08 (3) 2.802 (3) 141 (3)
O1—H1···N1 0.88 (2) 1.74 (2) 2.555 (2) 155 (3)
C6—H6···Cg2ii 0.93 2.85 3.645 (3) 144
C10—H10···Cg1ii 0.93 2.80 3.491 (3) 132

Symmetry codes: (i) −x+1, −y+3, −z; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2863).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev.7, 385–403.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Hadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). Tetrahedron, 43, 1345–1360.
  6. Koşar, B., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2109–o2111.
  7. Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J.15, 955–962. [DOI] [PMC free article] [PubMed]
  8. Maslen, H. S. & Waters, T. N. (1975). Coord. Chem. Rev.17, 137–176.
  9. Moustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126–1130.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Stewart, J. M. & Lingafelter, E. C. (1959). Acta Cryst.12, 842–845.
  12. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  13. Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o2642. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029316/ci2863sup1.cif

e-65-o2022-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029316/ci2863Isup2.hkl

e-65-o2022-Isup2.hkl (147.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES