Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 1;65(Pt 8):o1729–o1730. doi: 10.1107/S1600536809024362

2,3-Diamino­pyridinium 3-amino­benzoate

Kasthuri Balasubramani a, Hoong-Kun Fun a,*,
PMCID: PMC2977358  PMID: 21583446

Abstract

In the title salt, C5H8N3 +·C7H6NO2 , the pyridine N atom of the 2,3-diamino­pyridine mol­ecule is protonated. The proton­ated N atom and one of the two N atoms of the 2-amino groups are hydrogen bonded to the 3-amino­benzoate anion through a pair of N—H⋯O hydrogen bonds, forming an R 2 2(8) ring motif. The carboxyl­ate mean plane of the 3-amino­benzoate anion is twisted by 8.81 (7)° from the attached ring. The crystal structure is further stabilized by π–π inter­actions [centroid–centroid distance 3.6827 (7) Å].

Related literature

For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For hydrogen bonding in pyridine and its substituted derivatives, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For related structures, see: Fun & Balasubramani (2009); Balasubramani & Fun (2009a ,b ). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-o1729-scheme1.jpg

Experimental

Crystal data

  • C5H8N3 +·C7H6NO2

  • M r = 246.27

  • Monoclinic, Inline graphic

  • a = 9.9119 (2) Å

  • b = 10.1751 (2) Å

  • c = 12.4060 (2) Å

  • β = 106.811 (1)°

  • V = 1197.73 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.46 × 0.14 × 0.06 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.957, T max = 0.994

  • 19514 measured reflections

  • 4434 independent reflections

  • 2965 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.142

  • S = 1.06

  • 4434 reflections

  • 219 parameters

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024362/bt2977sup1.cif

e-65-o1729-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024362/bt2977Isup2.hkl

e-65-o1729-Isup2.hkl (212.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N2⋯O2i 0.91 (2) 2.02 (2) 2.9293 (14) 177.1 (17)
N3—H1N3⋯O2i 0.92 (2) 2.08 (2) 2.9854 (16) 167.3 (18)
N3—H2N3⋯O1ii 0.96 (2) 2.04 (2) 2.9544 (14) 158.1 (16)
N4—H1N4⋯O1iii 0.95 (2) 2.06 (2) 2.9794 (15) 162.3 (18)
N1—H1N1⋯O2 0.99 (2) 1.77 (2) 2.7510 (13) 167.1 (15)
N2—H1N2⋯O1 0.94 (2) 1.87 (2) 2.8086 (14) 175.7 (16)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

KBS and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KBS thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2,3-diaminopyridinium 4-hydroxybenzoate (Fun & Balasubramani, 2009), 2,3-diaminopyridinium 4-nitrobenzoate (Balasubramani & Fun, 2009a) and 2,3-diaminopyridinium benzoate (Balasubramani & Fun, 2009b) have been reported by us recently. In the hope to study some interesting hydrogen-bonding interactions, the title compound (I) was synthesized. Its molecular and crystal structure is presented here.

The asymmetric unit of (I) (Fig 1), contains a protonated 2,3-diaminopyridinium cation and an 3-aminobenzoate anion. The bond lengths (Allen et al., 1987) and angles are normal. In the 2,3-diaminopyridinium cation, the protonated N1 atom has lead to a slight increase in the C8—N1—C12 angle to 123.37 (11)°. The carboxylate group is twisted slightly from the ring with the dihedral angle between C1—C6 and O1/O2/C7/C6 planes being 8.81 (7)°. The 2,3-diaminopyridinium cation is planar, with a maximum deviation of 0.0126 (14) Å for atom C9.

In the crystal packing (Fig. 2), the protonated N1 atom and a nitrogen atom of the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O1) via a pair of N—H···O hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The 2-amino groups (N2 and N3) are involved in N—H···O hydrogen bonding interactions to form a R12(7) ring motif. The symmetry-related 3-aminobenzoate molecules are linked through N—H···O hydrogen-bonding to form a R22(14) ring motif (Table 1 and Fig. 2). The cystal structure is further stabilized by a π-π stacking interaction between the aminopyridine rings (C8—C12/N1) with centroid-to-centroid distance of 3.6827 (7) Å, perpendicular interplanar distance of 3.3536 (5) Å.

Experimental

Hot methanol solutions (20 ml) of 2,3-diaminopyridine (27 mg, Aldrich) and 3-aminobenzoic acid (35 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of (I) appeared from the mother liquor after a few days.

Refinement

All the H atoms were located from the difference Fourier map and allowed to refine freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate the hydrogen bonding.

Fig. 2.

Fig. 2.

Part of the crystal packing of (I). Dashed lines indicate the hydrogen bonding.

Crystal data

C5H8N3+·C7H6NO2 F(000) = 520
Mr = 246.27 Dx = 1.366 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3436 reflections
a = 9.9119 (2) Å θ = 2.9–32.6°
b = 10.1751 (2) Å µ = 0.10 mm1
c = 12.4060 (2) Å T = 100 K
β = 106.811 (1)° Plate, brown
V = 1197.73 (4) Å3 0.46 × 0.14 × 0.06 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4434 independent reflections
Radiation source: fine-focus sealed tube 2965 reflections with I > 2σ(I)
graphite Rint = 0.046
φ and ω scans θmax = 32.8°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −14→15
Tmin = 0.957, Tmax = 0.994 k = −12→15
19514 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.0752P] where P = (Fo2 + 2Fc2)/3
4434 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.45804 (11) 0.32315 (11) 0.46427 (8) 0.0219 (2)
N2 0.56864 (12) 0.28026 (12) 0.32806 (9) 0.0252 (2)
N3 0.36894 (13) 0.43692 (12) 0.17546 (9) 0.0275 (2)
C8 0.46690 (12) 0.34222 (12) 0.35929 (10) 0.0199 (2)
C9 0.36669 (13) 0.42721 (12) 0.28567 (10) 0.0223 (2)
C10 0.26897 (14) 0.48893 (14) 0.32782 (11) 0.0276 (3)
C11 0.26420 (14) 0.46612 (14) 0.43889 (12) 0.0286 (3)
C12 0.35938 (13) 0.38245 (13) 0.50509 (11) 0.0252 (3)
H10 0.1974 (16) 0.5508 (16) 0.2749 (13) 0.032 (4)*
H11 0.1881 (16) 0.5151 (16) 0.4685 (13) 0.033 (4)*
H12 0.3671 (16) 0.3657 (15) 0.5851 (13) 0.028 (4)*
H1N1 0.5279 (18) 0.2611 (17) 0.5122 (14) 0.040 (5)*
H1N2 0.6338 (18) 0.2303 (17) 0.3822 (15) 0.040 (5)*
H2N2 0.5864 (19) 0.2985 (18) 0.2620 (16) 0.045 (5)*
H1N3 0.453 (2) 0.4228 (19) 0.1593 (16) 0.056 (6)*
H2N3 0.311 (2) 0.504 (2) 0.1305 (16) 0.053 (5)*
C4 0.96875 (12) −0.19646 (13) 0.66376 (10) 0.0226 (2)
C5 0.89408 (12) −0.08847 (12) 0.60585 (10) 0.0206 (2)
H1 0.7131 (18) −0.0025 (17) 0.7829 (14) 0.042 (5)*
H2 0.8458 (18) −0.1824 (17) 0.8828 (15) 0.039 (4)*
H3 1.0060 (16) −0.3052 (16) 0.8108 (13) 0.032 (4)*
H5 0.9082 (15) −0.0651 (14) 0.5321 (12) 0.023 (4)*
C6 0.80059 (12) −0.01887 (12) 0.64902 (9) 0.0191 (2)
C7 0.72259 (12) 0.09741 (12) 0.58352 (9) 0.0198 (2)
O1 0.75796 (9) 0.13487 (9) 0.49856 (7) 0.0232 (2)
O2 0.62586 (10) 0.15115 (9) 0.61617 (7) 0.0259 (2)
N4 1.05563 (14) −0.26916 (14) 0.61717 (11) 0.0347 (3)
C1 0.78080 (13) −0.05510 (13) 0.75193 (10) 0.0231 (2)
C2 0.85824 (14) −0.16013 (13) 0.81132 (11) 0.0261 (3)
C3 0.94998 (13) −0.23049 (13) 0.76778 (11) 0.0249 (3)
H1N4 1.097 (2) −0.224 (2) 0.5680 (17) 0.057 (6)*
H2N4 1.109 (2) −0.329 (2) 0.6604 (17) 0.053 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0232 (5) 0.0234 (5) 0.0198 (5) 0.0005 (4) 0.0075 (4) 0.0013 (4)
N2 0.0283 (5) 0.0289 (6) 0.0206 (5) 0.0065 (4) 0.0105 (4) 0.0062 (4)
N3 0.0298 (6) 0.0314 (6) 0.0196 (5) 0.0039 (5) 0.0045 (4) 0.0048 (4)
C8 0.0208 (5) 0.0193 (5) 0.0196 (5) −0.0018 (4) 0.0059 (4) 0.0005 (4)
C9 0.0225 (5) 0.0220 (6) 0.0204 (5) −0.0007 (5) 0.0031 (4) 0.0010 (4)
C10 0.0238 (6) 0.0285 (7) 0.0283 (6) 0.0038 (5) 0.0041 (5) 0.0003 (5)
C11 0.0252 (6) 0.0307 (7) 0.0310 (7) 0.0016 (5) 0.0097 (5) −0.0041 (5)
C12 0.0262 (6) 0.0280 (7) 0.0234 (6) −0.0009 (5) 0.0104 (5) −0.0029 (5)
C4 0.0201 (5) 0.0230 (6) 0.0257 (6) −0.0015 (5) 0.0083 (4) 0.0014 (5)
C5 0.0209 (5) 0.0223 (6) 0.0187 (5) −0.0014 (4) 0.0057 (4) 0.0012 (4)
C6 0.0200 (5) 0.0196 (5) 0.0171 (5) −0.0019 (4) 0.0043 (4) −0.0002 (4)
C7 0.0231 (5) 0.0207 (6) 0.0151 (5) −0.0020 (4) 0.0046 (4) −0.0015 (4)
O1 0.0251 (4) 0.0266 (5) 0.0183 (4) 0.0010 (4) 0.0072 (3) 0.0034 (3)
O2 0.0318 (5) 0.0272 (5) 0.0213 (4) 0.0078 (4) 0.0116 (4) 0.0033 (3)
N4 0.0351 (6) 0.0352 (7) 0.0405 (7) 0.0139 (5) 0.0216 (5) 0.0126 (6)
C1 0.0257 (6) 0.0234 (6) 0.0217 (6) 0.0010 (5) 0.0096 (5) 0.0016 (5)
C2 0.0302 (6) 0.0279 (7) 0.0223 (6) 0.0012 (5) 0.0107 (5) 0.0061 (5)
C3 0.0235 (6) 0.0243 (6) 0.0273 (6) 0.0016 (5) 0.0078 (5) 0.0067 (5)

Geometric parameters (Å, °)

N1—C8 1.3445 (15) C4—N4 1.3822 (17)
N1—C12 1.3650 (16) C4—C3 1.3995 (17)
N1—H1N1 0.997 (18) C4—C5 1.4013 (17)
N2—C8 1.3382 (16) C5—C6 1.3907 (16)
N2—H1N2 0.936 (18) C5—H5 0.994 (14)
N2—H2N2 0.906 (19) C6—C1 1.3961 (16)
N3—C9 1.3775 (16) C6—C7 1.5147 (17)
N3—H1N3 0.92 (2) C7—O1 1.2621 (14)
N3—H2N3 0.96 (2) C7—O2 1.2677 (14)
C8—C9 1.4296 (16) N4—H1N4 0.95 (2)
C9—C10 1.3781 (18) N4—H2N4 0.88 (2)
C10—C11 1.4115 (19) C1—C2 1.3954 (18)
C10—H10 1.030 (16) C1—H1 1.017 (17)
C11—C12 1.3569 (19) C2—C3 1.3839 (18)
C11—H11 1.054 (16) C2—H2 0.957 (17)
C12—H12 0.988 (15) C3—H3 1.000 (16)
C8—N1—C12 123.37 (11) N4—C4—C3 121.21 (12)
C8—N1—H1N1 116.1 (10) N4—C4—C5 120.39 (11)
C12—N1—H1N1 120.5 (10) C3—C4—C5 118.38 (11)
C8—N2—H1N2 118.0 (10) C6—C5—C4 120.92 (11)
C8—N2—H2N2 121.7 (12) C6—C5—H5 121.3 (8)
H1N2—N2—H2N2 119.1 (15) C4—C5—H5 117.7 (8)
C9—N3—H1N3 118.6 (12) C5—C6—C1 120.21 (11)
C9—N3—H2N3 116.7 (11) C5—C6—C7 118.99 (10)
H1N3—N3—H2N3 114.2 (16) C1—C6—C7 120.79 (11)
N2—C8—N1 118.57 (11) O1—C7—O2 123.71 (11)
N2—C8—C9 122.86 (11) O1—C7—C6 117.51 (10)
N1—C8—C9 118.57 (11) O2—C7—C6 118.77 (10)
N3—C9—C10 123.98 (12) C4—N4—H1N4 116.5 (12)
N3—C9—C8 118.02 (11) C4—N4—H2N4 117.0 (12)
C10—C9—C8 117.90 (11) H1N4—N4—H2N4 115.6 (17)
C9—C10—C11 121.41 (12) C2—C1—C6 118.93 (12)
C9—C10—H10 117.8 (8) C2—C1—H1 121.7 (10)
C11—C10—H10 120.8 (8) C6—C1—H1 119.3 (10)
C12—C11—C10 118.71 (12) C3—C2—C1 120.88 (12)
C12—C11—H11 121.8 (9) C3—C2—H2 121.0 (10)
C10—C11—H11 119.4 (9) C1—C2—H2 118.1 (10)
C11—C12—N1 120.00 (12) C2—C3—C4 120.64 (12)
C11—C12—H12 123.7 (9) C2—C3—H3 120.7 (9)
N1—C12—H12 116.1 (9) C4—C3—H3 118.6 (9)
C12—N1—C8—N2 179.31 (11) C4—C5—C6—C1 0.65 (18)
C12—N1—C8—C9 −1.04 (17) C4—C5—C6—C7 179.83 (11)
N2—C8—C9—N3 5.26 (18) C5—C6—C7—O1 −7.75 (16)
N1—C8—C9—N3 −174.37 (11) C1—C6—C7—O1 171.43 (11)
N2—C8—C9—C10 −178.13 (12) C5—C6—C7—O2 171.97 (11)
N1—C8—C9—C10 2.23 (17) C1—C6—C7—O2 −8.85 (17)
N3—C9—C10—C11 174.31 (12) C5—C6—C1—C2 1.28 (18)
C8—C9—C10—C11 −2.08 (19) C7—C6—C1—C2 −177.89 (11)
C9—C10—C11—C12 0.7 (2) C6—C1—C2—C3 −2.1 (2)
C10—C11—C12—N1 0.6 (2) C1—C2—C3—C4 1.0 (2)
C8—N1—C12—C11 −0.41 (19) N4—C4—C3—C2 −177.33 (13)
N4—C4—C5—C6 176.53 (12) C5—C4—C3—C2 0.93 (19)
C3—C4—C5—C6 −1.75 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2N2···O2i 0.91 (2) 2.02 (2) 2.9293 (14) 177.1 (17)
N3—H1N3···O2i 0.92 (2) 2.08 (2) 2.9854 (16) 167.3 (18)
N3—H2N3···O1ii 0.96 (2) 2.04 (2) 2.9544 (14) 158.1 (16)
N4—H1N4···O1iii 0.95 (2) 2.06 (2) 2.9794 (15) 162.3 (18)
N1—H1N1···O2 0.99 (2) 1.77 (2) 2.7510 (13) 167.1 (15)
N2—H1N2···O1 0.94 (2) 1.87 (2) 2.8086 (14) 175.7 (16)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2977).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Balasubramani, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1511–o1512. [DOI] [PMC free article] [PubMed]
  3. Balasubramani, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o1519. [DOI] [PMC free article] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  5. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  7. Fun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1496–o1497. [DOI] [PMC free article] [PubMed]
  8. Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding Oxford University Press.
  9. Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures Berlin: Springer.
  10. Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II Oxford: Pergamon Press.
  11. Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society New York: Wiley.
  12. Scheiner, S. (1997). Hydrogen Bonding: A Theoretical Perspective Oxford University Press.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024362/bt2977sup1.cif

e-65-o1729-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024362/bt2977Isup2.hkl

e-65-o1729-Isup2.hkl (212.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES