Abstract
In the title salt, C5H8N3 +·C7H6NO2 −, the pyridine N atom of the 2,3-diaminopyridine molecule is protonated. The protonated N atom and one of the two N atoms of the 2-amino groups are hydrogen bonded to the 3-aminobenzoate anion through a pair of N—H⋯O hydrogen bonds, forming an R 2 2(8) ring motif. The carboxylate mean plane of the 3-aminobenzoate anion is twisted by 8.81 (7)° from the attached ring. The crystal structure is further stabilized by π–π interactions [centroid–centroid distance 3.6827 (7) Å].
Related literature
For substituted pyridines, see: Pozharski et al. (1997 ▶); Katritzky et al. (1996 ▶). For hydrogen bonding in pyridine and its substituted derivatives, see: Jeffrey & Saenger (1991 ▶); Jeffrey (1997 ▶); Scheiner (1997 ▶). For related structures, see: Fun & Balasubramani (2009 ▶); Balasubramani & Fun (2009a
▶,b
▶). For bond-length data, see: Allen et al. (1987 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 ▶).
Experimental
Crystal data
C5H8N3 +·C7H6NO2 −
M r = 246.27
Monoclinic,
a = 9.9119 (2) Å
b = 10.1751 (2) Å
c = 12.4060 (2) Å
β = 106.811 (1)°
V = 1197.73 (4) Å3
Z = 4
Mo Kα radiation
μ = 0.10 mm−1
T = 100 K
0.46 × 0.14 × 0.06 mm
Data collection
Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005 ▶) T min = 0.957, T max = 0.994
19514 measured reflections
4434 independent reflections
2965 reflections with I > 2σ(I)
R int = 0.046
Refinement
R[F 2 > 2σ(F 2)] = 0.050
wR(F 2) = 0.142
S = 1.06
4434 reflections
219 parameters
All H-atom parameters refined
Δρmax = 0.33 e Å−3
Δρmin = −0.23 e Å−3
Data collection: APEX2 (Bruker, 2005 ▶); cell refinement: SAINT (Bruker, 2005 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024362/bt2977sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024362/bt2977Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H2N2⋯O2i | 0.91 (2) | 2.02 (2) | 2.9293 (14) | 177.1 (17) |
| N3—H1N3⋯O2i | 0.92 (2) | 2.08 (2) | 2.9854 (16) | 167.3 (18) |
| N3—H2N3⋯O1ii | 0.96 (2) | 2.04 (2) | 2.9544 (14) | 158.1 (16) |
| N4—H1N4⋯O1iii | 0.95 (2) | 2.06 (2) | 2.9794 (15) | 162.3 (18) |
| N1—H1N1⋯O2 | 0.99 (2) | 1.77 (2) | 2.7510 (13) | 167.1 (15) |
| N2—H1N2⋯O1 | 0.94 (2) | 1.87 (2) | 2.8086 (14) | 175.7 (16) |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
KBS and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KBS thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.
supplementary crystallographic information
Comment
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2,3-diaminopyridinium 4-hydroxybenzoate (Fun & Balasubramani, 2009), 2,3-diaminopyridinium 4-nitrobenzoate (Balasubramani & Fun, 2009a) and 2,3-diaminopyridinium benzoate (Balasubramani & Fun, 2009b) have been reported by us recently. In the hope to study some interesting hydrogen-bonding interactions, the title compound (I) was synthesized. Its molecular and crystal structure is presented here.
The asymmetric unit of (I) (Fig 1), contains a protonated 2,3-diaminopyridinium cation and an 3-aminobenzoate anion. The bond lengths (Allen et al., 1987) and angles are normal. In the 2,3-diaminopyridinium cation, the protonated N1 atom has lead to a slight increase in the C8—N1—C12 angle to 123.37 (11)°. The carboxylate group is twisted slightly from the ring with the dihedral angle between C1—C6 and O1/O2/C7/C6 planes being 8.81 (7)°. The 2,3-diaminopyridinium cation is planar, with a maximum deviation of 0.0126 (14) Å for atom C9.
In the crystal packing (Fig. 2), the protonated N1 atom and a nitrogen atom of the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O1) via a pair of N—H···O hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The 2-amino groups (N2 and N3) are involved in N—H···O hydrogen bonding interactions to form a R12(7) ring motif. The symmetry-related 3-aminobenzoate molecules are linked through N—H···O hydrogen-bonding to form a R22(14) ring motif (Table 1 and Fig. 2). The cystal structure is further stabilized by a π-π stacking interaction between the aminopyridine rings (C8—C12/N1) with centroid-to-centroid distance of 3.6827 (7) Å, perpendicular interplanar distance of 3.3536 (5) Å.
Experimental
Hot methanol solutions (20 ml) of 2,3-diaminopyridine (27 mg, Aldrich) and 3-aminobenzoic acid (35 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of (I) appeared from the mother liquor after a few days.
Refinement
All the H atoms were located from the difference Fourier map and allowed to refine freely.
Figures
Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate the hydrogen bonding.
Fig. 2.
Part of the crystal packing of (I). Dashed lines indicate the hydrogen bonding.
Crystal data
| C5H8N3+·C7H6NO2− | F(000) = 520 |
| Mr = 246.27 | Dx = 1.366 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 3436 reflections |
| a = 9.9119 (2) Å | θ = 2.9–32.6° |
| b = 10.1751 (2) Å | µ = 0.10 mm−1 |
| c = 12.4060 (2) Å | T = 100 K |
| β = 106.811 (1)° | Plate, brown |
| V = 1197.73 (4) Å3 | 0.46 × 0.14 × 0.06 mm |
| Z = 4 |
Data collection
| Bruker SMART APEXII CCD area-detector diffractometer | 4434 independent reflections |
| Radiation source: fine-focus sealed tube | 2965 reflections with I > 2σ(I) |
| graphite | Rint = 0.046 |
| φ and ω scans | θmax = 32.8°, θmin = 2.2° |
| Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −14→15 |
| Tmin = 0.957, Tmax = 0.994 | k = −12→15 |
| 19514 measured reflections | l = −18→18 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.142 | All H-atom parameters refined |
| S = 1.06 | w = 1/[σ2(Fo2) + (0.0681P)2 + 0.0752P] where P = (Fo2 + 2Fc2)/3 |
| 4434 reflections | (Δ/σ)max < 0.001 |
| 219 parameters | Δρmax = 0.33 e Å−3 |
| 0 restraints | Δρmin = −0.23 e Å−3 |
Special details
| Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1 | 0.45804 (11) | 0.32315 (11) | 0.46427 (8) | 0.0219 (2) | |
| N2 | 0.56864 (12) | 0.28026 (12) | 0.32806 (9) | 0.0252 (2) | |
| N3 | 0.36894 (13) | 0.43692 (12) | 0.17546 (9) | 0.0275 (2) | |
| C8 | 0.46690 (12) | 0.34222 (12) | 0.35929 (10) | 0.0199 (2) | |
| C9 | 0.36669 (13) | 0.42721 (12) | 0.28567 (10) | 0.0223 (2) | |
| C10 | 0.26897 (14) | 0.48893 (14) | 0.32782 (11) | 0.0276 (3) | |
| C11 | 0.26420 (14) | 0.46612 (14) | 0.43889 (12) | 0.0286 (3) | |
| C12 | 0.35938 (13) | 0.38245 (13) | 0.50509 (11) | 0.0252 (3) | |
| H10 | 0.1974 (16) | 0.5508 (16) | 0.2749 (13) | 0.032 (4)* | |
| H11 | 0.1881 (16) | 0.5151 (16) | 0.4685 (13) | 0.033 (4)* | |
| H12 | 0.3671 (16) | 0.3657 (15) | 0.5851 (13) | 0.028 (4)* | |
| H1N1 | 0.5279 (18) | 0.2611 (17) | 0.5122 (14) | 0.040 (5)* | |
| H1N2 | 0.6338 (18) | 0.2303 (17) | 0.3822 (15) | 0.040 (5)* | |
| H2N2 | 0.5864 (19) | 0.2985 (18) | 0.2620 (16) | 0.045 (5)* | |
| H1N3 | 0.453 (2) | 0.4228 (19) | 0.1593 (16) | 0.056 (6)* | |
| H2N3 | 0.311 (2) | 0.504 (2) | 0.1305 (16) | 0.053 (5)* | |
| C4 | 0.96875 (12) | −0.19646 (13) | 0.66376 (10) | 0.0226 (2) | |
| C5 | 0.89408 (12) | −0.08847 (12) | 0.60585 (10) | 0.0206 (2) | |
| H1 | 0.7131 (18) | −0.0025 (17) | 0.7829 (14) | 0.042 (5)* | |
| H2 | 0.8458 (18) | −0.1824 (17) | 0.8828 (15) | 0.039 (4)* | |
| H3 | 1.0060 (16) | −0.3052 (16) | 0.8108 (13) | 0.032 (4)* | |
| H5 | 0.9082 (15) | −0.0651 (14) | 0.5321 (12) | 0.023 (4)* | |
| C6 | 0.80059 (12) | −0.01887 (12) | 0.64902 (9) | 0.0191 (2) | |
| C7 | 0.72259 (12) | 0.09741 (12) | 0.58352 (9) | 0.0198 (2) | |
| O1 | 0.75796 (9) | 0.13487 (9) | 0.49856 (7) | 0.0232 (2) | |
| O2 | 0.62586 (10) | 0.15115 (9) | 0.61617 (7) | 0.0259 (2) | |
| N4 | 1.05563 (14) | −0.26916 (14) | 0.61717 (11) | 0.0347 (3) | |
| C1 | 0.78080 (13) | −0.05510 (13) | 0.75193 (10) | 0.0231 (2) | |
| C2 | 0.85824 (14) | −0.16013 (13) | 0.81132 (11) | 0.0261 (3) | |
| C3 | 0.94998 (13) | −0.23049 (13) | 0.76778 (11) | 0.0249 (3) | |
| H1N4 | 1.097 (2) | −0.224 (2) | 0.5680 (17) | 0.057 (6)* | |
| H2N4 | 1.109 (2) | −0.329 (2) | 0.6604 (17) | 0.053 (5)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1 | 0.0232 (5) | 0.0234 (5) | 0.0198 (5) | 0.0005 (4) | 0.0075 (4) | 0.0013 (4) |
| N2 | 0.0283 (5) | 0.0289 (6) | 0.0206 (5) | 0.0065 (4) | 0.0105 (4) | 0.0062 (4) |
| N3 | 0.0298 (6) | 0.0314 (6) | 0.0196 (5) | 0.0039 (5) | 0.0045 (4) | 0.0048 (4) |
| C8 | 0.0208 (5) | 0.0193 (5) | 0.0196 (5) | −0.0018 (4) | 0.0059 (4) | 0.0005 (4) |
| C9 | 0.0225 (5) | 0.0220 (6) | 0.0204 (5) | −0.0007 (5) | 0.0031 (4) | 0.0010 (4) |
| C10 | 0.0238 (6) | 0.0285 (7) | 0.0283 (6) | 0.0038 (5) | 0.0041 (5) | 0.0003 (5) |
| C11 | 0.0252 (6) | 0.0307 (7) | 0.0310 (7) | 0.0016 (5) | 0.0097 (5) | −0.0041 (5) |
| C12 | 0.0262 (6) | 0.0280 (7) | 0.0234 (6) | −0.0009 (5) | 0.0104 (5) | −0.0029 (5) |
| C4 | 0.0201 (5) | 0.0230 (6) | 0.0257 (6) | −0.0015 (5) | 0.0083 (4) | 0.0014 (5) |
| C5 | 0.0209 (5) | 0.0223 (6) | 0.0187 (5) | −0.0014 (4) | 0.0057 (4) | 0.0012 (4) |
| C6 | 0.0200 (5) | 0.0196 (5) | 0.0171 (5) | −0.0019 (4) | 0.0043 (4) | −0.0002 (4) |
| C7 | 0.0231 (5) | 0.0207 (6) | 0.0151 (5) | −0.0020 (4) | 0.0046 (4) | −0.0015 (4) |
| O1 | 0.0251 (4) | 0.0266 (5) | 0.0183 (4) | 0.0010 (4) | 0.0072 (3) | 0.0034 (3) |
| O2 | 0.0318 (5) | 0.0272 (5) | 0.0213 (4) | 0.0078 (4) | 0.0116 (4) | 0.0033 (3) |
| N4 | 0.0351 (6) | 0.0352 (7) | 0.0405 (7) | 0.0139 (5) | 0.0216 (5) | 0.0126 (6) |
| C1 | 0.0257 (6) | 0.0234 (6) | 0.0217 (6) | 0.0010 (5) | 0.0096 (5) | 0.0016 (5) |
| C2 | 0.0302 (6) | 0.0279 (7) | 0.0223 (6) | 0.0012 (5) | 0.0107 (5) | 0.0061 (5) |
| C3 | 0.0235 (6) | 0.0243 (6) | 0.0273 (6) | 0.0016 (5) | 0.0078 (5) | 0.0067 (5) |
Geometric parameters (Å, °)
| N1—C8 | 1.3445 (15) | C4—N4 | 1.3822 (17) |
| N1—C12 | 1.3650 (16) | C4—C3 | 1.3995 (17) |
| N1—H1N1 | 0.997 (18) | C4—C5 | 1.4013 (17) |
| N2—C8 | 1.3382 (16) | C5—C6 | 1.3907 (16) |
| N2—H1N2 | 0.936 (18) | C5—H5 | 0.994 (14) |
| N2—H2N2 | 0.906 (19) | C6—C1 | 1.3961 (16) |
| N3—C9 | 1.3775 (16) | C6—C7 | 1.5147 (17) |
| N3—H1N3 | 0.92 (2) | C7—O1 | 1.2621 (14) |
| N3—H2N3 | 0.96 (2) | C7—O2 | 1.2677 (14) |
| C8—C9 | 1.4296 (16) | N4—H1N4 | 0.95 (2) |
| C9—C10 | 1.3781 (18) | N4—H2N4 | 0.88 (2) |
| C10—C11 | 1.4115 (19) | C1—C2 | 1.3954 (18) |
| C10—H10 | 1.030 (16) | C1—H1 | 1.017 (17) |
| C11—C12 | 1.3569 (19) | C2—C3 | 1.3839 (18) |
| C11—H11 | 1.054 (16) | C2—H2 | 0.957 (17) |
| C12—H12 | 0.988 (15) | C3—H3 | 1.000 (16) |
| C8—N1—C12 | 123.37 (11) | N4—C4—C3 | 121.21 (12) |
| C8—N1—H1N1 | 116.1 (10) | N4—C4—C5 | 120.39 (11) |
| C12—N1—H1N1 | 120.5 (10) | C3—C4—C5 | 118.38 (11) |
| C8—N2—H1N2 | 118.0 (10) | C6—C5—C4 | 120.92 (11) |
| C8—N2—H2N2 | 121.7 (12) | C6—C5—H5 | 121.3 (8) |
| H1N2—N2—H2N2 | 119.1 (15) | C4—C5—H5 | 117.7 (8) |
| C9—N3—H1N3 | 118.6 (12) | C5—C6—C1 | 120.21 (11) |
| C9—N3—H2N3 | 116.7 (11) | C5—C6—C7 | 118.99 (10) |
| H1N3—N3—H2N3 | 114.2 (16) | C1—C6—C7 | 120.79 (11) |
| N2—C8—N1 | 118.57 (11) | O1—C7—O2 | 123.71 (11) |
| N2—C8—C9 | 122.86 (11) | O1—C7—C6 | 117.51 (10) |
| N1—C8—C9 | 118.57 (11) | O2—C7—C6 | 118.77 (10) |
| N3—C9—C10 | 123.98 (12) | C4—N4—H1N4 | 116.5 (12) |
| N3—C9—C8 | 118.02 (11) | C4—N4—H2N4 | 117.0 (12) |
| C10—C9—C8 | 117.90 (11) | H1N4—N4—H2N4 | 115.6 (17) |
| C9—C10—C11 | 121.41 (12) | C2—C1—C6 | 118.93 (12) |
| C9—C10—H10 | 117.8 (8) | C2—C1—H1 | 121.7 (10) |
| C11—C10—H10 | 120.8 (8) | C6—C1—H1 | 119.3 (10) |
| C12—C11—C10 | 118.71 (12) | C3—C2—C1 | 120.88 (12) |
| C12—C11—H11 | 121.8 (9) | C3—C2—H2 | 121.0 (10) |
| C10—C11—H11 | 119.4 (9) | C1—C2—H2 | 118.1 (10) |
| C11—C12—N1 | 120.00 (12) | C2—C3—C4 | 120.64 (12) |
| C11—C12—H12 | 123.7 (9) | C2—C3—H3 | 120.7 (9) |
| N1—C12—H12 | 116.1 (9) | C4—C3—H3 | 118.6 (9) |
| C12—N1—C8—N2 | 179.31 (11) | C4—C5—C6—C1 | 0.65 (18) |
| C12—N1—C8—C9 | −1.04 (17) | C4—C5—C6—C7 | 179.83 (11) |
| N2—C8—C9—N3 | 5.26 (18) | C5—C6—C7—O1 | −7.75 (16) |
| N1—C8—C9—N3 | −174.37 (11) | C1—C6—C7—O1 | 171.43 (11) |
| N2—C8—C9—C10 | −178.13 (12) | C5—C6—C7—O2 | 171.97 (11) |
| N1—C8—C9—C10 | 2.23 (17) | C1—C6—C7—O2 | −8.85 (17) |
| N3—C9—C10—C11 | 174.31 (12) | C5—C6—C1—C2 | 1.28 (18) |
| C8—C9—C10—C11 | −2.08 (19) | C7—C6—C1—C2 | −177.89 (11) |
| C9—C10—C11—C12 | 0.7 (2) | C6—C1—C2—C3 | −2.1 (2) |
| C10—C11—C12—N1 | 0.6 (2) | C1—C2—C3—C4 | 1.0 (2) |
| C8—N1—C12—C11 | −0.41 (19) | N4—C4—C3—C2 | −177.33 (13) |
| N4—C4—C5—C6 | 176.53 (12) | C5—C4—C3—C2 | 0.93 (19) |
| C3—C4—C5—C6 | −1.75 (18) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2N2···O2i | 0.91 (2) | 2.02 (2) | 2.9293 (14) | 177.1 (17) |
| N3—H1N3···O2i | 0.92 (2) | 2.08 (2) | 2.9854 (16) | 167.3 (18) |
| N3—H2N3···O1ii | 0.96 (2) | 2.04 (2) | 2.9544 (14) | 158.1 (16) |
| N4—H1N4···O1iii | 0.95 (2) | 2.06 (2) | 2.9794 (15) | 162.3 (18) |
| N1—H1N1···O2 | 0.99 (2) | 1.77 (2) | 2.7510 (13) | 167.1 (15) |
| N2—H1N2···O1 | 0.94 (2) | 1.87 (2) | 2.8086 (14) | 175.7 (16) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+2, −y, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2977).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Balasubramani, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1511–o1512. [DOI] [PMC free article] [PubMed]
- Balasubramani, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o1519. [DOI] [PMC free article] [PubMed]
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
- Fun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1496–o1497. [DOI] [PMC free article] [PubMed]
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding Oxford University Press.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures Berlin: Springer.
- Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II Oxford: Pergamon Press.
- Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society New York: Wiley.
- Scheiner, S. (1997). Hydrogen Bonding: A Theoretical Perspective Oxford University Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024362/bt2977sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024362/bt2977Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


